PDP-11
PAPER TAPE SOFTWARE
PROGRAMMING HANDBOOK

e

| PDP-11
PAPER TAPE SOFTWARE
PROGRAMMING HANDBOOK

The software described in this manual is
furnished to the purchaser under a license
for use on a single computer system and can
be copied (with inclusion of DEC's copyright
notice) only for use in such system, except
as may otherwise be provided in writing by
DEC.

For additional copies. order No. DEC-11-XPTSA-A-D from Digital Equipment

Corporation, Software Distribution Center, Bldg. 1-2, Maynard, Mass.

DIGITAL EQUIPMENT CORPORATION ¢ MAYNARD, MASSACHUSETTS

First Edition, April 1970 <;*
Revised, March 1971
Revised, January 1972

Revised, February, 1973

Your attention is invited to the last two pages of this
document. The "How To Obtain Software Information" page
tells you how to keep up-to-date with DEC's software.

The "Reader's Comments" page, when filled in and mailed,
is beneficial to both you and DEC; all comments received
are considered when documenting subsequent manuals.

Copyright @ 1970, 1971, 1972, 1973 by Digital Equipment
Corporation

Technical Changes from the previous version (DEC-11-GGPC-D)
are indicated with a bar in the margin of the appropriate ()
page.

Supporting and referenced documents:

PDP-11 BASIC Programming Manual
(order: DEC-11-XBPMA-A-D)

Copies are available from DEC's Software Distribution Center, ()
Building 1-2, Maynard, Massachusetts 01754 -

Teletype is a registered trademark of the Teletype
Corporation

The following are registered trademarks
of Digital Equipment Corporation.

DEC PDP ,

FLIP CHIP FOCAL (
COMPUTER LAB - DIGITAL (logo)

OMNIBUS UNIBUS

ii 1/75-15

PREFACE

This Handbook contains descriptions of the Paper Tape Software for
the PDP-11 system. With this information you can load, dump, edit, assem-
ble, and debug PAL-11A Assembly Language programs. Math routines and
input/output functions are also available to facilitate your programming
efforts.

The table of contents in the front of the Handbook directs you to the
chapter of the system program desired. There you will find a detailed
table of contents for reference while working with that chapter. For
locating items in still more detail, an Index concludes the Handbook.

The following symbols, when used herein, have the indicated meanings:

) denotes pressing the RETURN key, or indicates an ASCII
carriage return;

¥ denotes pressing the LINE FEED key, or indicates an
ASCITI line feed;

A denotes pressing the SPACE bar, or indicates an ASCII
space;

-] denotes typing CTRL/TAB, or indicates an ASCII tab.
Other documentation conventions are:

1. Unless otherwise indicated, a line of user input is terminated
with the RETURN key.

2. When the distinction is useful, system printout is underlined

and user input is not underlined.

3. CTRL/U denotes holding down the CTRL key while typing the U key,
as when using the SHIFT/key combination. The slash is shown merely to
tie the actions together. CTRL is also used with certain other keys,
e.g., CTRL/P. The use of the CTRL/key combinations usually prints a +
and the key typed, e.g., CTRL/U echoes +U on the printer when using ED-11
or IOX.

iii

CONTENTS

CHAPTER

1 Programming the PDP-11 System

2 The System Configuration

3 Writing PAL-11A Assémbly Language
Programs : . i

4 Editing the Source Program

5 Debugging Object Programs On-Line

6 Loading and Dumping Core Memory

7 Input/Output Programming

8 Floating-Point and Math Package Overview

9 Programming TechniQﬁes |

APPENDIX

A ASCII Character Set

B PAL-11A Assembly Language and
Assembler

C Text Editor, ED-11

D Debugging Object Programs On-Line, ODT-1l
and ODT-11X ‘

E Loading and Dumping Core Memory

F Input/Output Programming, IOX

G Summary of Floating-Point and Math
Package, FPMP-11

H Tape Duplication |

I Assembling the PAL-11A Assembler

J Standard PDP-11 Abbreviations

K Conversion Tables

TABLE

FIGURE

Instruction Operand Fields

PDP-11 System Block Diagram
Processor Status Register
PDP-11 System Unibus Block Diagram

Illustration of Push and Pop
Operations

Nested Device Servicing

The PDP-11 Console

ASR-33 Teletype Console

ASR-33 Teletype Keyboard
High-Speed Péper Tape Reader Punch
Line Printer Control Panel

ODT Communication and Data Flow
Bootstrap Loader Instructions

Loading and Verifying the Bootstrap
Loader

Loading Bootstrap Tapes into Core
The Bootstrap Loader Program
Bootstrap Tape Format

ioading with the Absolute Loader

Dumping Using DUMPAB or DUMPTT

vi

1-5

1-10

1-16

2-1

2-6

/7 N

CHAPTER 1
PROGRAMMING THE PDP-11 SYSTEM

INTRODUCTION

SYSTEM FACILITIES
STATUS REGISTER FORMAT
UNIBUS

DEVICE INTERRUPTS
INSTRUCTION SET

ADDRESSING
Registers
Address Pointers
Stack Operations
Random Access of Tables
Summary of Address Modes
Accessing Unstructured Data

INSTRUCTION CAPABILITY

PROCESSOR USE OF STACKS
Subroutines
Tntterriipits
Traps 1-15

I
HHEE P PHPYoNIS O 1 Gl s =
Lo =~ %)

°

OLWOWWOVWWYW O NNNNNNS O O W NN -

Ll L o
1
= O

°
o Ul WN
H ERRERRHERE R R R e e e
i

° o
[
1

HFHRPEH 2 RRREHERBERHE B2 R H R B

wn =

165 4H0) PAPER TAPE SYSTEM SOFTWARE =G

CHAPTER 1

PROGRAMMING THE PDP-11 SYSTEM

1.1 INTRODUCTION

The PDP-11 is a 16-bit, general-purpose, parallel-logic computer using
two's complement arithmetic. Programmers can directly address 32,768
l6-bit words, or 65,536 8-bit bytes. All communication between system
components is done on a single high-speed bus called the Unibus.
Standard features of the system include eight general-purpose registers
which can be used as accumulators, index registers, or address pointers;
and a multi-level automatic priority interrupt system. A simplified

block diagram of the PDP-11 System is presented in Figure 1-1.

This chapter gives the PDP-11 programmer an overview of system architec-
ture, points out unique hardware features, and presents programming
concepts basic to the use of the PDP-11l. Following this is a short sum-—

mary of DEC-supplied PDP-11 software.

1.2 SYSTEM FACILITIES

The architecture of the PDP-11 system and the design of its central pro-

cessor provide:

e single and double operand addressing
e full word and byte addressing

e simplified list and stack processing through auto-address
stepping (autoincrementing and autodecrementing)

® eight programmable general-purpose registers

WYIDVIA dD01d WHLSAS TT-ddd

!

40SS320dd TTVHLNID

N

VAN

*1-T @Inbt1d

ALl

"AHOW3N
3400

Sy31si93y
3sodynd
A X-ELED

1HOI3

LINN
OILIWNHLIYV

NOILVYLlIgdY
Allyolyd
2]
TOYLNOD

snaiNn

S301A30
d43H10

y S

NS

L

o)
21A}Z

NjLl}] d0ldd

431S193Y8 SNLVLS

3dVvl
43dvd

SN8INN

LN3INdIND3
43INO0LSNI

H3L1Nldd
3NIT

data manipulation directly within external device
registers

addressing of device registers using normal memory
reference instructions

asynchronous operation of memory, processor and
I/0 devices

a hardware interrupt priority structure for peri-
pheral devices

automatic interrupt identification without device
polling

cycle stealing direct memory access for high-speed
data transfer devices

direct addressing of 32K words (65K bytes).

Two design features of the central processor serve to increase

system throughput:

The eight programmable general-purpose registers within
the central processor can be used to store data and
intermediate results during the execution of a sequence
of instructions. Register-to-register addressing .

provides reduced execution time for most instructions.

The ability to code two addresses within a single

instruction allows operations on data within memory.
This eliminates the need to load processor registers
prior to data operations, and greatly reduces fetch

and store operations.

1.3 STATUS REGISTER FORMAT

The Central Processor Status Register (PS) contains in-
formation on the current priority of the processor, the result
of previous operations, and an indicator for detecting the
execution of an instruction to be trapped during program de-
bugging. The priority of the central processor can be set
under program control to any one of eight levels. This in-

. formation is held in bits 5, 6, and 7 of the PS. Four bits
are assigned to monitor different results of previous instruc-

tions. These bits are set as follows:

Z -- if the result was zero
N -- if the result was negative
C -- if the operation resulted in a carry from

the most significant bit
V -- if the operation resulted in an arithmetic

overflow

The T bit is used in program debugging and can be set or
cleared under program control. If this bit is set when an
instruction is fetched from memory,a processor trap will

occur at the completion of the instruction's execution.

1 processor
unPsed priority T N Z| Vv
1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Figure 1-2. Processor Status Register

TN

N

1.4 UNIBUS

The Unibus is a key component of the PDP-11's unique architecture.
The Central Processor, memory, and all peripheral devices share
the same bus. This means that device registers can be addressed
as memory, and data transfers from input to output devices can
by-pass the processor. No special I/0 instructions exist. All

PDP-11 instructions are available for I/O operations.
<:: UNIBUS . ' " ::)
4

READ
PAPER CUSTOMER
ONLY TELETYPE DISK
MEMORY. TAPE - EQUIPMENT o o o

CENTRAL READ/ WRITE
PROCESSOR MEMORY

Figure 1-3 PDP-11 System Unibus Block Diagram

1.5 DEVICE INTERRUPTS

Interrupt request lines provide for device interrupts at

processor priority levels 4 through 7. Attachment of a device

to a specific line determines the device's hardware priority.
‘Since multiple devices can be attached to a specific line, the
priority for each is determined by position; devices closer to the

Central Processor have higher priority.

Direct memory devices, such as disk units, transfer data at the
Non-Processor Request level (NPR) which has a higher priority
than the interrupt request lines. Data transfers between such

devices and core memory are overlapped with Processor operations.

1-5

Peripheral device interrupts are linked to specific core memory
locations, or "interrupt vectors", in such a way that device
polling is eliminated. When an interrupt occurs, the interrupt
vector supplies a new Processor Status word (i.e., new contents for
the Processor Status register) and a new value for the Program
Counter. The new PC value causes execution to start at the proper

handler at the priority level indicated by the new Status register.

1.6 INSTRUCTION SET

'The instruction set (explained fully in the PDP-11 Processor Handbook:

summarized in Appendix B of this manual) provides operations that
act upon 8-bit bytes and 16-bit words. Coupled with varying

address modes -- Relative, Index, Immediate, Register, Autoincrement,
or Autodecrement, each of which can be deferred -- more than 4g0
unique instructions are available. Instruction length is variable --
from one to three 16-bit words, depehding upon the addressing

mode (s) used.
1.7 ADDRESSING

Every byte has its own unique address. It is the instruction which
determihes whether 8-bit bytes or 1l6-bit words are being referenced.
Words are addressed by their low-order (even-numbered) byte.
Although byte addressing can be to odd- or even-numbered

addresses, referencing words at odd-numbered addresses is illegal.
Bits are numbered from 0 at the lowest order bit (2°), to 15 (for

a word) or 7 (for a byte) at the highest order bit (215 or 27).

1-6

TN

Most data in programs is structured in some way; often by means of

tables consisting of the data itself or of addresses which point to

the daa. The PDP-11 handles common data structures with operand address-
ing modes specifically designed for each kind of access. In addition,
addressing for unstructured data permits direct random access to all

of core. The actual formats of the modes are described in Chapter 3,

on the PAL-11 Assembler.

1.7.1 Registers
Addressing in the PDP-11 is done through the general registers. These

registers can be specified by preceding a number in the range 0 to 7
with a %. However, it is common practice to assign to symbols the
register identities; often R0=%0, R1=%1, etc. Throughout this manual,
reference to RO, Rl, etc., as well as SP and PC, assumes such prior
direct assignment. (See Chapter 3, Section 3.3.4.) All eight general
registers are accessible to the programmer, but two of these have addi-
tional specialized functions (discussed below). R6 is the processor

Stack Pointer (SP), and R7 is the Program Counter (PC).

To make use of a register as an accumulator, index register, or sequential
address pointer, data needs to be transferable to and from the register.

This is accomplished with Register Mode, which specifies that the in-

struction is to operate on the contents of the indicated register itself.

For example:

CLR R3 ;CLEAR REGISTER 3 OF ITS CONTENTS

1.7.2 Address Pointers

The instruction can be made to interpret the register contents

as the address of the data to be operated upon, by specifying that

Register Mode be deferred. For example, if register 3 contains 1000

CLR (R3) or CLR @R3

will clear the address 1000. Moreover, if it is desired to perform

the instruction successively upon data at sequential addresses (i.e.,

in a table), Autoincrement Mode can be selected. This will auto- <
matically increment the contents of the register, after its use as a |
pointer to the next sequential byte or word address. Note that Auto-
increment Mode (as well as Autodecrement Mode, mentioned below) is

automatically deferred one level to cause the register contents to

function as a pointer. (

When it 1is sEecified that Autoincrement Mode be deferred, it is de-

ferred two levels so that the instruction interprets the autoincremented

sequential locations as a table of addresses rather than as a table of

data, as in nondeferred Autoincrement Mode. The instruction then (’)

operates upon the data at the addresses specified by the table entries.

Each execution of the following ADD instructions increments the value
of the register contents by two, to the next word address (always an

even number).

ACCUM: ADD (R@)+,(R1)+ ;IF R§ INITIALLY CONTAINS 1904,
. sAND Rl INITIALLY CONTAINS 145§,
. :THE VALUES AT LOCATIONS 1##4,
. .1¢@2, ETC., ARE ADDED TO THOSE AT
. :LOCATIONS 145§, 1452, ETC., AND
. . THE RESULT STORED AT 145§, ETC. <
JMP ACCUM ,

1-8

ACCUM: ADD @(R3)+,R2 ; IF R3 INITIALLY CONTAINS 1008,
. ;AND LOCATION 1@@g@ CONTAINS 3424,

' ; THE VALUE AT LOCATION 342¢ IS
: ;ADDED TO THE CONTENTS OF R2 AND
. ;THE RESULT IS STORED THERE. AT

;NEXT EXECUTION OF THE INSTRUC-

: ;TION, R3=1£02.
JMP ACCUM

Byte instructions (such as TSTB (R2)+) using Autoincrement

Mode, increment the register contents by one.

In addition to this capability of incrementing a register's
contents after their use as a pointer, an address mode comple-

mentary to this exists. Autodecrement Mode decrements the contents

of the specified register before the contents are used as a
pointer. This mode, too, can be deferred an additional level if

the table contains addresses rather than data.

1.7.3 Stack Operations

Both Autoincrement and Autodecrement Modes are used in stack
operations. Stacks, also called push-down or LIFO (Last-In-
First-Out) lists, are important for temporarily saving values
which might otherwise be altéred. Their characteristic is that
the most recent piece of data saved is the first to be restored.
The PDP-11 processor makes use of stack structure to save and
restore the state of the machine on interrupts, traps, and sub-
routines (see below). To save, data is "pushed" onto a stack
by autddecrementing the contents of a register (e.g., MOV R3,-(R6));
to restore, data is "popped" from a stack by autoincrementing
(e.g., MOV (R6)+,R3). The register being used as the Stack

Pointer always points to the top word of the stack.

1-9

EO E1

/

CORE
MEMORY EO
1. AN EMPTY, 2. PUSHING A 3. PUSHING ANOTHER
STACK DATUM ONTO DATUM ONTO THE
THE STACK STACK
//EZ E2 ’/ES E3
E1 E1 E1 E1
EO EO EO EO
4. ANOTHER 5.POP 6. PUSH 7. POP
PUSH

Figure 1-4. 1Illustration of Push and Pop Operations

1.7.4 Random Access of Tables

Direct access to an entry in the middle of a stack, or indeed
any kind of table, is accomplished through Index Mode. The
contents of a register are added to a base (fetched from the
word or second word following the instruction) to calculate an
address. With this facility, a fixed-order element of several

tables, or several elements of a single table may be accessed.

addresses e.g., if R3

TABLE OF WORDS of entries __contains Operand code
TBLL:]« TBL1 g
é TBL1+2 2
¢ TBL1+4 4 TBL1 (R3)
&« TBL1+6 6 X in each case
& TBL1+1f 19
4

When deferred Index Mode is specified (e.g., @TBL1(R3)), the

calculated address contains a pointer to the data, rather than

the data itself. Byte tables are discussed in Section 1.8.

1.7.5 Summary of Address Modes

The address modes may now be summarized as follows:

Assembler
Syntax

Rn
(Rn) +

-(Rn)

A(Rn)

Assembler

Syntax

@Rn or (Rn)
@(Rn)+

@-(Rn)

@A {Rn)

1.7.6 Accessing Unstructured Data .

Non-deferred Modes

Mode

Register
Autoincrement

Autodecrement

Index

Deferred Modes

Mode

Deferred Ragister
Deferred Auto-
increment

Deferred Auto-
decrement

Deferred Index

Typical Use

Accumulator

Sequential pointer to data
in a table; popping data
off a stack

Sequential pointer to data in

a table; pushing data on a stack.
Random access to stack or

table entry.

Typical Use

Pointer to an address
Sequential pointer to addresses
in a table; popping address

pointers off a stack.
Sequential pointer to addresses
in a table; pushing address
pointers on a stack
Random access to table of
address pointers.

Addressing of unstructured data becomes greatly facilitated through

the use of the Program Counter (R7) as the specified register in
these modes. This is particularly true of Autoincrement and. Index
Modes, which are mentioned below, but discussed more fully in Chapter 3,

the PAL-1ll Assembler.

Autoincrement Mode using R7 is the way immediate data is assembled.
This mode causes the operand itself to be fetched from the word (or
second word) following the instruction. It is designated by preceding
a numeric or symbolic value with #, and is known as Immediate Mode.
The instructibn

ADD #58,R3
causes the wvalue 5ﬂ8 to be added to the contents of register 3.
If the # is preceded by @, the immediate data is interpreted as an

absolute address, i.e., an address that remains constant no matter

where in memory the assembled instruction is executed.

Index Mode using R7 is the normal way memory addresses are assembled.

This is relative addressing because the number of byte locations between

the Program Counter (which contains the address of the current word+2)

and the data referenced (destination minus PC) is placed in the word (or
second word) following the instruction. It is this value that is indexed
by R7 (the Program Counter). ((Destination-PC)+PC=Destination.) Relative
Mode is designated by specifying a memory location either numerically or
symbolically (e.g., TST 108 or TST A).' If a memory address specifica-

tion is preceded by @, it is in deferred Relative Mode and the contents

of the location are interpreted by the instruction as a pointer to the

address of the data.

1-12

1.8 INSTRUCTION CAPABILITY

The twelve ways of specifying an operand demonstrate the
flexibility of the PDP-1l in accessing data according to how it
is structured, and even if it is not structured. Each instruc-
tion adds to this versatility by acting on an operand in a way
particularly suited to its task. For example, the task of
adding, moving, or comparing implies the use of two operands in
any of the twelve addressing forms;, whereas the task of clearing,

testing, or negating implies only one operand. Examples:

ADD #12,GROUP (R2) CLR R3
MOV MEM1,MEM2 TST SUM
CMP (R4)+,VALUE NEG @-(R5)

Some instructions have counterparts which operate on byte data
rather than on full words. These byte instructions are easily
recognized by the suffixing of the letter B to the word’instruc—
tion. MOV is one such word instruction; e.g., MOVB #12,GROUP(R2)
would move an 8-bit value of 128 to the 8-bit byte at the address
specified. One implication of byte instructions is that in
Autoincrement or Autodecrement Mode, a table of bytes is being
scanned(The Autoincrement or Autodecrement therefore goes by
one in byte instructions, rather than by two. However, because
of their specialized processor functions, R6 and R7 in these

modés always increment or decrement by two.

Forms other than single- or double-operand instructions include
Operate instructions such as HALT and RESET, which take no
operands; Branch instructions, which transfer program control
under specified conditions (see Section 3.7); Subroutine calls
and returns; and Trap instructions (see Appendix B for complete

instruction set).

1.9 PROCESSOR USE OF STACKS

Because of the nature of last-in-first-out data structures, the
same stack can be used to nest multiple levels of interrupts,

traps, and subroutines.

1.9.1 Subroutines

In Subroutine calls (JSR Reg,Dest) the contents of the specified
register are saved on the stack (the processor always uses R6

as its Stack Pointer) and the value of the PC (return address
following subroutine execution) becomes the new value of the
register. This allows any arguments following the call to be
referenced via the register. The command RTS Reg causes the
return from the subroutine by moving the register value into the
PC. It then pops the saved register contents back into the
register. (Return from a subroutine is made through the same

register that was used in its call.)

1.9.2 Ihterrugts

When the processor acknowledges a device interrupt request, the

1-14

device sends an interrupt vector address to the processor. The
processor then pushes the current Status (PS) and PC onto the

stack and picks up a new PS and PC (the interrupt vector) from

the address specified by the device. Another acknowledged interrupt
before dismissal will cause the PS and PC of the running device
service routine to be pushed onto the stack and the address and
status of the new service routine to be loaded into the PC and PS.

A process can be resumed by popping the old PC and PS from the Stack

into the current PC and PS with the Return from Interrupt (RTI)

instruction.
1.9.3 Traps

Traps are processor generated interrupts. Error conditions,
certain instructions, and the completion of an instruction fetched
while the T bit was set cause traps. As in interrupts, the
current PC and Status are saved on the stack and a new PC and
Status are loaded from the appropriate trap vector. The instruc-
tion RTI provides for a return from anbinterrupt or trap by

popping the top two words of the stack back into the PC and PS.

1.PROCESS 0 IS 0 4.PROCESS 1 (o]
RUNNING STACK 400 INTERRUPTED o
POINTER (SP) WITH PC=PC,

POINTING TO AND STATUS=PS;.
PROCESS IS
LOCATION PO. ob L og PROCESS
PROGRAM ’ SP—| PC1
PS1
TE1
TEO
2.INTERRUPT STOPS Y rco
PROCESS O WITH 400
PC=PCo AND PSO
STATUS = PSg
STARTS PROCESS 1. PO |PROGRAM
sp—=| PcCO
Pso 5.PROCESS 2 0
PO COMPLETES WITH 400
PROGRAM|- A RTI INSTRUCTION
(DISMISSES
INTERRUPT).
PC IS RESET SP—» TE1
TO PC; AND
STATUS IS RESET TEO

3.PROCESS 1 USES o
STACK FOR 400 TO PS;. PCO
TEMPORARY PROCESS 1 RESUMES. P50
STORAGE (TEq, TE,).

04 PO[PROGRAM|
sp—+| TE1
o
TEO 6.PROCESS 1
RELEASES THE 400
PCO TEMPORARY
PSO STORAGE HOLDING
PO TEO AND TEI.
PROGRAM sp—| Pco
PSO
PO |PROGRAM
7. PROCESS 1 COMPLETES or
ITS OPERATION WITH A 400
RTI.
PC IS RESET TO PCo
AND STATUS IS SP—PO
RESET TO PS°~ PROGRAM

PROCESS O RESUMES.

Figure 1-5. Nested Device Servicing

1.10 PAPER TAPE SYSTEM SOFTWARE

The paper tape system and utility programs described herein require

at least 4K of core memory (except for the 8K version of the

i

PAL-11A Assembler) and an ASR—33 Teletype.

/ ™~

An optional high-speed paper-tape reader and punch is available,
as is a line printer. The operation of these input/output devices

is explained in Chapter 2.

Following are abstracts of the paper-tape software programs des-

cribed in this handbook.

1. Bootstrap Loader -- used to load into core memory,
programs punched on paper tape in bootstrap format.
It is primarily used to load the Absolute Loader and
Dump programs (see Chapter 6).

2. Absolute Loader -- used to load into core memory,
programs punched on paper tape in absolute binary
format. This not only includes the binary tapes df
subsequently listed programs but also any user program
assembled using the PAL-11lA Assembler or dumped by
the DUMPAB program (see Chapter 6).

3. PAL-11A -- the absolute assembler for PDP-11 Paper
Tape Software system (see Chapter 3).

4. ED-11 -- the text editor for the PDP-1l1 Paper Tape
Software system. It is primarily ihtended for use
in producing source program tapes, but may be used
for any text generating and editing purposes (see
Chapter 4).

5. ODT-11 and ODT-11X -- these are on-line debugging
programs, enabling you to check out any object program.
You can run all or any portion of an object program,
and make corrections or modifications to it by typing

commands to ODT while at the Teletype (see Chapter 5).

1-17

IOX -- which stands for Input/Output Executive, provides asyn-
chronous I/0 service for Teletype I/O devices and the high-
speed paper tape reader and punch. (IOXLPT allows also for a
line printer.) It enables you to write simple I/O requests
specifying devices and data forms to accomplish interrupt-
controlled data transfer concurrently with the execution of a
running user program. It is an integral part of PAL-11lA and

ED-11 (see Chapter 7).

FPMP-1l-~-which stands for Floating-Point and Math Package,
PDP-11, is a comprehensive set of subroutines which enable
you to perform arithmetic operations. The subroutines may

be used by any PDP-11 object program (see Chapter 8 for overview).
DUMPTT and DUMPAB -- are core dump programs which provide

dumping of specified areas of core either in octal on the

Teletype or in absolute binary on paper tape (see Chapter 6).

1-18

f \

CHAPTER 2
THE SYSTEM CONFIGURATION

2001 PDP-11 CONSOLE 2=-1
el ! Elements of the Console 2-1
P vl A L Register Displays 2=2
P % e Switch Register 2=2
2% Lailiss3 Indicator Lights 2=3
2l Operating the Control Switches 2-4
202 OPERATING THE TELETYPE 2-6
22 Power Controls 2=6
e 252 Printer 2-6
Sedes Keyboard 2%
2.2,4 Paper Tape Reader 297
2.2.5 Paper Tape Punch 2-8
20D OPERATING THE HIGH-SPEED PAPER TAPE READER 2=8
AND PUNCH
23511 Reader Unit 229
25382 Punch Unit 2=
250 THE LP11 LINE PRINTER 2-10
2.5 INITIALIZING THE SYSTEM 2-12

CHAPTER 2

THE SYSTEM CONFIGURATION

This chapter explains the operation of the computer console, Teletype,

high-speed reader/punch, and line printer.

2.1 PDP-11 CONSOLE

The PDP-11 console is designed to achieve convenient control of the system.
Through switches and keys on the console, programs and information can be

manually inserted or modified. 1Indicator lamps display the status of the
computer at all times. The PDP-11 console is shown in Figure 2-1, and each

switch, key, and display lamp is explained below.

T .
dli[gli]t]a]l oo
e —
ADDRESS REGISTER RUN BUS FETCH EXEC
C T I 1 I T | C——T1—
DATA SOURCE__DESTINATION ADDRESS
 — 1 T T I T T 1]
< !
hal OFF WITCH REGISTS LOAD fExAM | CONT femasie Is/inst ISTART
ok | 77 [e f s fraf3afafufel ol |76 |5 }a]s]2] L] ADOR WAL
_ v,

Figure 2-1. The PDP-11l Console

2.1.1 Elements of the Console

The console has the following indicators and switches:

1. A bank of eight indicators, indicating the following con-

i ditions or operations:

a. Fetch

b. Execute

c. Bus

d. Run

e. Source

f. Destination

g. Address (two bits)

TN

2. An 18-bit ADDRESS REGISTER display
3. A 16-bit DATA Register display

4., An 18-bit Switch Register

5. Control Switches:

a. LOAD ADDR (Load value set in Switch Register into
address register)

b. EXAM (Examine contents of location)
c. CONT (Continue execution)
d. ENABLE/

HALT (Enable or halt execution)

e. S-INST/ (single Instruction-Single
S-CYCLE Cycle execution)

f.” START (Start execution)
g. DEP (Deposit value set in Switch Register
into specified memory location)

2.1.1.1 Register Displays

The operator's console has an 18-bit ADDRESS REGISTER display and a 16-bit
DATA Register display. The ADDRESS REGISTER display is tied directly to
the output of an 18-bit flip-flop register called the Bus Address Register.
This register displays the address of data examined or deposited.

2.1.1.2 Switch Register

The PDP-11 is capable of reférencing 16-bit addresses. However, the Unibus
has expansion capability for 18-bit addresses. Therefore, to access the
entire 18-bit address scheme, the Switch Register is 18-bits wide. These
bits are assigned as 0 through 17. The highest two bits are used only for
addressing.

A switch in the up position is considered to have a 1 value. A switch
in the down position is considered to have a 0 value. The condition of the
switches can be loaded into the ADDRESS REGISTER or any memory location
using the appropriate control switch described below.

1. LOAD ADDR Transfers the contents of the 18-bit
Switch Register into the ADDRESS REGIS-
TER.

2. EXAM Displays the contents of the location

specified by the ADDRESS REGISTER.

p 3. DEP Deposits the contents of the low-order

(__- 1l6-bits of the Switch Register into
the address displayed in the ADDRESS
REGISTER:. (This switch is actuated by
raising it.)

4. ENABLE/HALT Allows or prevents running of programs.
' For a program to run, the switch must
« be in the ENABLE position (up). Placing

the switch in the HALT position (down)
will halt the system at the end of the
current instruction or cycle, depending
on the position of the S-INST/S-CYCLE
switch.

5. START Begins execution of a program when the

ENABLE/HALT switch is in the ENABLE

(” position. When the START switch is de-

. pressed it asserts a system initializa-
tion signal, actually starting the sys-
tem when the switch is released. The
processor will start executing at the
address which was last loaded by the
LOAD ADDR switch.

6. CONT Allows the computer to continue with-
- out initialization from whatever state
(7 ’ it was in when halted.

7. S-INST/S-CYCLE Determines whether a single instruction

or a single cycle is performed when the
CONT switch is depressed while the com-
puter is in the halt mode.

When the system is running a program, the LOAD ADDR, EXAM, and DEPosit
<» functions are disabled to prevent disrupting the running program.

2.1.1.3 1Indicator Lights

The indicator lights signify specific computer functions, operations, or
states. Each is explained below.

1. FETCH Indicates that the central processor is
- : in the state of fetching an instruction.
2, EXECUTE Indicates that the central processor is
in the state of executing an instruction.
. 3. BUS Indicates that a peripheral is controlling
(- the bus. It is lit when Bus Busy (BBSY)

is asserted, unless the processor (includ-
ing the console) is asserting BBSY.

2-3

4. RUN Indicates that the processor is running.
(While executing a RESET command [20 ms.]
the RUN light is not on.)

5. SOURCE Indicates that the central processor is
obtaining source data. (Not lit when
data is from an internal register.)

6. DESTINATION Indicates that the central processor is
obtaining destination data. (Not 1lit
when data is from an internal register.)

7. ADDRESS Identifies the source or destination ad-
dress cycle of the central processor.
When references to the addresses are made
via the Unibus, the lights tell the com-
puter's source or destination cycle. For
an internal register reference, the address
is always zero.

2.1.2 Operating the Control Switches

When the PDP-11 has been halted at the end of an instruction, it is possible
to examine and update the contents of locations. (You cannot EXAMine or
DEPosit at the end of a single cycle unless the cycle coincides with the
end of the instruction.) To examine a specific location, set the Switch
Register to correspond to the location's address, and press LOAD ADDR,
which will transfer the contents of the Switch Register into the ADDRESS
REGISTER. The location of the address to be examined is then displayed

in the ADDRESS REGISTER. You can then depress EXAM, and the data in that
location will appear in the DATA register.

If you attempt to examine data from or deposit data into a nonexistent
memory location, an error will occur and the DATA register will reflect
location 000004, the trap location for references to nonexistent locations.
To verify this condition, deposit some number other than four in the loca-
tion. If four is still indicated, either nothing is assigned to that loca-
tion or whatever is assigned is not working properly.

By depressing EXAM again, the ADDRESS REGISTER will be incremented by
two to the next word address, and the contents of this next location may be
examined. The ADDRESS REGISTER will always indicate the address of the
data displayed in the DATA register.

2-4

~

TN

The examine function is such that if LOAD ADDR is depressed and then
EXAM, the ADDRESS REGISTER will not be incremented. In this case, the
location reflected in the ADDRESS REGISTER is examined directly. However,
on successive depressings of EXAM only, the ADDRESS REGISTER is incremented.

If you find an incorrect entry in the DATA register, you can enter the
correct data there by putting it in the Switch Register and raising the
DEP switch. The ADDRESS REGISTER will not increment when this data is
deposited. Therefore, by pressing the EXAM switch you can examine (verify)
the data just deposited. However, pressing EXAM again will increment the

register to the next word address.

When doing consecutive examines or deposits, the address will incre-
ment by two, to successive word locations. However, when examining the
general-purpose registers (R0-R7), the system only increments by one.

The reason for this is that once the Switch Register is set properly, you
can use the automatic stepping feature of EXAM to examine general-purpose

registers from the computer console.

To start a program after it is loaded into core, load the starting

address of the program into the Switch Register, press LOAD ADDR, and
after ensuring that the ENABLE/HALT switch is in the ENABLE position, de-
press START. The program should start to run as soon as the START switch

is released.

Normally, when the system is running, not only will the RUN light be
on but other lights (FETCH, EXECUTE, SOURCE, etc.) will be flickering. If
the RUN light is on and none of the other lights are flickering, the system
could be executing a WAIT instruction which waits for an interrupt.

While in the halt mode, if you wish to do a single instruction, place
the S-INST/S-CYCLE switch in the S-INST position and depress CONT. When
CONT is pressed, the console momentarily passes control to the processor,
allowing it to execute one instruction before regaining control. Each time
the CONT switch is pressed the computer will execute one instruction. If

you wish to have the computer perform a single cycle, place the S-INST/S-
CYCLE switch in the S-CYCLE position and press CONT. The computer will

then perform one complete cycle and halt.

To start the program again, place the ENABLE/HALT switch in the ENABLE
position and press CONT. (_5

2.2 OPERATING THE TELETYPE

The ASR-33 Teletype (TTY) is the basic input/output device for PDP-11 com-
puters. It consists of a printer, keyboard, paper tape reader, and paper
tape punch, all of which can be used either on-line under program control or

off-line. The Teletype controls (Figure 2-2) are described as they apply
to the operation of the computer. o

4

OFF

START -
STOP -
FREE -

OFF
Line O LocaL

(TTY switch)
Figure 2-2. ASR-33 Teletype Console

7 N\,

2.2.1 Power Controls

LINE - The Teletype is energized and connected to
the computer as an input/output device, under
computer control.

OFF - The Teletype is de-energized.
LOCAL

The Teletype is energized for off-line opera-
tion. -

2.2.2 Printer

The printer provides a typed copy of input and output at 10 characters per (
second, maximum. -

2-6

TN

TN

TN

2.2.3 Keyboard

The Teletype keyboard is similar to a typewriter keyboard. However, cer-
tain operational functions are shown on the upper part of some of the key-
tops. These functions are activated by holding down the CTRL key while
depressing the desired key. For example, when using the Text Editor,
CTRL/U causes the current line of text to be ignored.

Although the left and right square brackets are not visible on the
keyboard keytops, they are shown in Figure 2-3 and are generated by typing
SHIFT/K and SHIFT/M, respectively. The ALT MODE key is identified as ESC
(ESCape) on some keyboards.

OCOOOOOLOOLOOG
HLOLOOOOLLOHOOG®
@000@@@0@@‘@
@@.@@@@@‘

SPACE

Figure 2-3. ASR-33 Teletype Keyboard

2.2.4 Paper Tape Reader

I The paper tape reader (LSR) is used to read data punched on eight chan-
nel perforated paper tape at a rate of 10 characters per second, maxi-
mum. The reader controls are shown in Figure 2-2 and described below.

START Activates the reader; reader sprocket wheel
is engaged and operative.

STOP Deactivates the reader; reader sprocket wheel
is engaged but not operative.

FREE Deactivates the reader; reader sprocket wheel
is disengaged. ’

The following procedure describes how to properly position paper tape
in the low-speed reader.

a. Raise the tape retainer cover.

2=7

b. Set reader control to FREE.

c. Position the leader portion of the tape over the read
pens with the sprocket (feed) holes over the sprocket
(feed) wheel and with the arrow on the tape (printed
or cut) pointing outward.

d. Close the tape retainer cover.

e. Make sure that the tape moves freely.

f. Set reader control to START, and the tape will be read.

2.2.5 Paper Tape Punch

The paper tape punch (LSP) is used to perforate eight-channel rol
oiled paper tape at a maximum rate of 10 characters per second.

punch controls are shown in Figure 2-2 and described below.

RELease Disengages the tape to allow tape removal or
loading.
B.SP Backspaces the tape one space for each firm

depression of the B.SP button.
ON (LOCK ON) Activates the punch.

OFF (UNLOCK) Deactivates the punch.
Blank leader/trailer tape is generated by:

l. Turning the TTY switch to LOCAL
2. Turning the LSP on

3. Typing the HERE IS key

4. Turning the LSP off

5. Turning the TTY switch to LINE.

2.3 OPERATING THE HIGH-SPEED PAPER TAPE READER AND PUNCH UNITS

A high-speed paper tape reader and punch unit is pictured in Figure

and descriptions of the reader and punch units follow.

led
The

// \\

T
/ N

2.3.1 Reader Unit

The high-speed paper tape reader is used to read data from eight-channel
fan-folded (non-oiled) perforated paper tape photoelectrically at a maxi-
mum rate of 300 characters per second. Primary power is applied to the
reader when the computer POWER switch is turned on. The reader is under
program control. However, tape can be advanced past the photoelectric

sensors without causing input by pressing the reader FEED button.

2.3.2 Punch Unit

The high-speed paper tape punch is used to record computer output on eight-
channel fan-folded paper tape at a maximum rate of 50 characters per second.
All characters are punched under program control from the computer. Blank
tape (feed holes only, no data) may be produced by pressing the FEED button.
Primary power is available to the punch when the computer POWER switch is

turned on.

e A
@) PUNCH

o o T3 FEED
READER

ON LINE

[T e— Feeo

D _J
7 7
PAPER TAPE OFF LINE

Figure 2-4. High-Speed Paper Tape Reader/Punch

Paper tape is loaded into the reader as explained below.

1. Raise tape retainer cover.

2. Put tape into right-hand bin with channel one of
the tape toward the rear of the bin.

3. Place several folds of blank tape through the
reader and into the left-hand bin.

2-9

4. Place the tape over the reader head with feed
holes engaged in the teeth of the sprocket wheel.

5. Close the tape retainer cover.
6. Depress the tape feed button until leader tape is
over the reader head.
CAUTION
Oiled paper tape should not be used
in the high-speed reader or punch -

0oil collects dust and dirt which can
cause reader or punch errors.

2.4 THE LP1ll LINE PRINTER

The LP1l is a line printer with 80 column capacity, capable of printing
more than 300 lines per minute at a full 80 columns, and more than 1100
lines per minute at 20 columns. The print rate is dependent upon the data

and the number of columns to be printed.

Characters are loaded into the printer memory via the Line Printer
Buffer (LPB) serially. When the memory becomes full (20 characters) the
characters are automatically printed. This continues until the 80 columns (
have been printed or a carriage return, line feed, or form feed character

is recognized.

Figure 2-5 illustrates the printer control panel on which are mounted

three indicator lights and three toggle switches.

READY ON LINE

ON LINE

@ 6 ©

TOP PAPER OFF LINE

Figure 2-5. Line Printer Control Panel
2-10

Operation of the lights and switches is as follows:

(" power light

READY light

ON LINE light

ON/OFF (main power) switch

TOP OF FORM switch

I

PAPER STEP switch

ON LINE/OFF LINE switch

Glows red to indicate main power switch
(located inside cabinet) is at ON posi-
tion and power is available to the printer.

Glows white, shortly after the POWER light
goes on to indicate that internal compon-
ents have reached synchronous state and
the printer is ready to operate.

Glows white to indicate that ON LINE/OFF
LINE toggle switch is in ON LINE position.

This switch controls line current to the
printer. To gain access to it, the printer
front panel is unlatched, by pushing the
circular button on the right hand edge,

and opened to the left on its hinges. The
switch is located to the left of center
approximately fourteen inches below the
top. If power is available, the red POWER
light on the control panel will glow when
the switch is positioned at ON.

The switch is on when in the up position.
The ON and OFF labels are printed on the
stem of the switch. A group of two switches
and three indicator lights, above the main
power switch, are for the use of techni-
cians in making initial adjustments to the
printer.

This switch is tipped toward the front of

the cabinet to roll up the form to the top
of the succeeding page. It is spring re-

turned to center position, and produces a

single top-of-form operation each time it

is actuated. The switch is effective only
when the printer is off line.

Operates similarly to TOP OF FORM but pro-
duces a single line step each time it is
actuated. It is only effective with
printer off line.

This two-position toggle switch is spring-
returned to center. When momentarily posi-
tioned at ON LINE it logically connects the
printer to the computer and causes the ON
LINE light to glow. Positioned momentarily
at OFF LINE, the logical connection to the
computer is broken, the ON LINE light goes
off, and the TOP OF FORM and PAPER STEP
switches are enabled.

2-11

2.5 INITIALIZING THE SYSTEM

Before using the computer system, it is good practice to initialize all units (;_

as specified below.

Qe

b‘

Main power cord is properly plugged in
Computer POWER key is ON
Console switches are set:

ENABLE/HALT to HALT
SR=000000

Teletype is turned to LINE
Low-speed punch is OFF
Low-speed reader is set to FREE

High-speed reader/punch is ON

The system is now initialized and ready for your use.

2-12

TN

CHAPTER 3
WRITING PAL-11A
ASSEMBLY LANGUAGE PROGRAMS

CHARACTER SET

LWOWOWWOWWOVWWYW WML N1 oo Ul BB WLWWLWWW DN -
o'i o eneie s o o o ¢ e & fon mi el e e o o ol ! ~lat, e o e 1 o v e i8I e

3=2
3 STATEMENTS 3=2
1 Label 3-3
2 Operator 3-3
3 Operand 3-4
4 Comments S=5
5 Format Control =5
SYMBOLS =5
1 Permanent Symbols 3-6
2 User-defined Symbols 8=6
5 Direct Assignment 3=6
4 Register Symbols B
EXPRESSIONS 3=8
i Numbers 2=
2 Arithmetic and Logical Operators 3=3
3 ASCII Conversion 3-10
3

ASSEMBLY LOCATION COUNTER
ADDRESSING

www

i
e
W H O

W WWWWWWwWw WWWwWwWwwWww W WWWWwWwWwWwWwWwwwww W WWwWww WWWwww Wwwwww w

vl Register Mode
<62 Deferred Register Mode =
3 Autoincrement Mode 313
.4 Deferred Autoincrement Mode 3-14
5 Autodecrement Mode 3-14
6 Deferred Autodecrement Mode 3-14
i/ Index Mode =15
8 Deferred Index Mode 3=15
9 Tmmediate and Deferred Immediate Modes S%1S
10 Relative and Deferred Relative Modes 3=16
11 Table of Mode Formats and Codes el
INSTRUCTION OPERAND FORMS 3-18
ASSEMBLER DIRECTIVES g_%g
1 .EOT Siv
. 2 . EVEN 3-20
£ . END 3-20
4 . WORD 21
5 .BYTE 3=
6%~ LASETT 3-22
OPERATING PROCEDURES 3-22
1 Introduction S0
2 Loading PAL-11A a9
3 Initial Dialogue Fwa
4 Assembly D}alggue =20
) Assembly Listing S
.10 ERROR CODES 5
3-33

3.11 SOFTWARE ERROR HALTS

CHAPTER 3

~ WRITING PAL-11A ASSEMBLY LANGUAGE PROGRAMS

PAL-11A (Program Assembly Language for the PDP-11's Absolute Assembler) is
the "heart" of the PDP-11/20 Paper Tape Software system. It enables you
to write source (symbolic) programs using letters, numbers, and symbols
which are meaningful to you. The source programs, generated either on-
line using the Text Editor (ED-11l), or off-line, are then assembled into
object programs (in absolute binary) which are executable by the computer.
The object program is produced after two passes through the Assembler; an
optional third pass produces a complete octal/symbolic listing of the as-
sembled program. This listing is especially useful for documentation and
—. debugging purposes.

This chapter explains not only how to write PAL-11A programs but
also how to assemble the source programs into computer—accéptable ob-
ject programs. All facets of the assembly language are explained and
illustrated with many examples, and the chapter concludes with assem-
bling procedures. In explaining how to write PAL-11lA source programs

(‘X it is necessary, especially at the outset, to make frequent forward
references. Therefore, we recommend that you first read through the
entire chapter to get a "feel" for the language, and then reread the
chapter, this time referring to appropriate sections as indicated, for

a thorodgh understanding of the language and assembling procedures.

Some notable features of PAL-11A are:

1. Selective assembly pass functions

2. Device specification for pass functions

3. Optional error listing on Teletype

4. Double buffered and concurrent I/0 (provided by IOX)
5. Alphabetized, formatted symbol table listing

The PAL-11A Assembler is available in two versions: a 4K version and

an 8K version.

. The assembly language applies equally to both versions. The 4K ver-
(W ! sion provides symbol storage for about 176 user-defined symbols, and the
8K version provides for about 1256 user-defined symbols (see Section 3.3).

3-1

In addition, the 8K version allows a line printer to be used for the pro-

gram listing and/or symbol table listing.

The following discussion of the PAL-11A Assembly Language assumes

that you have read the PDP-11 Processor Handbook, with emphasis on those

sections which deal with the PDP-11 instruction set, formats, and tim-
ings -- a thorough knowledge of these is vital to efficient assembly

language programming.

3.1 CHARACTER SET

A PAL-11A source program is composed of symbols, numbers, expressions,
symbolic instructions, assembler directives, argument separators, and line
terminators written using the following ASCIIl characters.

1. The letters A through Z. (Upper and lower case letters
are acceptable, although upon input, lower case letters
will be converted to upper case letters.)

2. The numbers 0 through 9.
3. The characters . and $ (reserved for system software).
4. The separating or terminating symbols:

:=% 4@ (), "' +-8!
carriage return tab space line feed form feed

3.2 STATEMENTS

A source program is composed of a sequence of statements, where each state-
ment is on a single line. The statement is terminated by a carriage return
character and must be immediately followed by either a line feed or form
feed character. Should a carriage return character be present and not be
followed by a line feed or form feed, the Assembler will generate a Q

error (Section 3.10) and that portion of the line following the carriage
return will be ignored. Since the carriage return is a required statement
terminator, a line feed or form feed not immediately preceded by a carriage

return will have one inserted by the Assembler.

It should be noted that, if the Editor (ED-11l) is being used to create
the source program (see Section 4.4.4), a typed carriage return (RETURN

lASCII stands for American Standard Code for Information Interchange.

3-2

key) automatically generates a line feed character.

A statement may be composed of up to four fields which are identified
by their order of appearance and by specified terminating characters as ex-
plained below and summarized in Appendix B. The four fields are:

Label .Operator Operand Comment

The label and comment fields are optional. The operator and operand
fields are interdependent -- either may be omitted .depending upon the con-
tents of the other. ‘

3.2.1 Label

A label is a user-defined symbol (see Section 3.3.2) which is assigned the
value of the current location counter. It is a symbolic means of referring
to a specific location within a program. If present, a label always occurs
first in a statement and must be terminated by a colon. For example, if

the current location is 100 the statement

8'

ABCD: MOV A,B

will assign the value lOO8 to the label ABCD so that subsequent reference
to ABCD will be to location 1008. More than one label may appear within
a single label field; each label within the field will have the same value.
For example, if the current location is 100, multiple labels in the state-

ment
ABC: $DD: A7.7: MOV A,B

will equate each of the three labels ABC, $DD, and A7.7 with the value

1008. ($§ and . are reserved for system software.)

The error code M (multiple definition of a symbol) will be generated

during assembly if two or more labels have the same first six characters.

3.2.2 Operator

An operator follows the label field in a statement, and may be an instruc-
tion mnemonic or an assembler directive (see Appendix B). When it is an

instruction mnemonic, it specifies what action is to be performed on any

3-3

operand (s) which follows it. When it is an assembler directive, it speci-

fies a certain function or action to be performed during assembly.

The operator may be preceded only by one or more labels and may be
followed by one or more operands and/or a comment. An operator is legally
terminated by a space, tab, or any of the following characters.

$# + - @ (" ' & ! & , ;
line feed form feed carriage return

The use of each character above will be explained in this chapter.
Consider the following examples:

MOV A,B i+ (TAB) terminates operator MOV
MOV@A,B ;@ terminates operator MOV

When the operator stands alone without an operand or comment, it is
terminated by a carriage return followed by a line feed or form feed charac-

ter.

3.2.3 Ogerand

An operand is that part of a statement which is operated on by the opera-
tor -- an instruction mnemonic or assembler directive. Operands may be

symbols, expressions, or numbers. When multiple operands appear within a
statement, each is separated from the next by a comma. An operand may be

preceded by an operator and/or label, and followed by a comment.

The operand field is terminated by a semicolon when followed by a
comment, or by a carriage return followed by a line feed or form feed

character when the operand ends the statement. For example,

LABEL: MOV GEORGE,BOB ; THIS IS A COMMENT
where the space between MOV and GEORGE terminated the operator field and
began the operand field; the comma separated the operands GEORGE and BOB;

the semicolon terminated the operand field and began the comment.

3-4

(

.

3.2.4 Comments

The comment field is optional and may contain any ASCII character except
null, rubout, carriage return, line feed or form feed. All other charac-
ters, even those with special significance are ignored by the Assembler

when used in the comment field.

The comment field may be preceded by none, any, or all of the other
three fields. It must begin with the semicolon and end with a carriage

return followed by a line feed or form feed character. For example,
LABEL: CLR HERE ;THIS IS A $1.00 COMMENT
Comments do not affect assembly processing or program execution, but
they are useful in program listings for later analysis, checkout or docu-

mentation purposes.

3.2.5 Format Control

The format is controlled by the space and tab characters. They have no

effect on the assembling process of the source program unless they are em-
bedded within a symbol, number, or ASCII text; or are used as the operator
field terminator. Thus, they can be used to provide a neat, readable pro-

gram. A statement can be written
LABEL:MOV(SP)+,TAG;POP VALUE OFF STACK
or, using formatting characters it can be written
LABEL: MOV (SP)+,TAG ;POP VALUE OFF STACK

which is much easier to read.

Page size is controlled by the form feed character. A page of n lines

is created by inserting a form feed (CTRL/FORM keys on the keyboard) after
the nth line. If no form feed is present, a page is terminated after 56

lines,

3.3 symbols

There are two types of symbols, permanent and user-defined. Both are

3-5

stored in the Assembler's symbol table. Initially, the symbol table con-
tains the permanent symbols, but as the source program is assembled, user-
defined symbols are added to the table.

3.3.1 Permanent Symbols

Permanent symbols consist of the instruction mnemonics (see Appendix B. 3)
and assembler directives (see Section 3.8). These symbols are a permanent
part of the Assembler's symbol table and need not be defined before being

used in the source program.

3.3.2 User-Defined Symbols

User-defined symbols are those defined as labels (see Section 3.2.1) or by
direct assignment (see Section 3.3.3). These symbols are added to the sym-
bol table as they are encountered during the first pass of the assembly.
They can be composed of alphanumeric characters, dollar signs, and periods
only; again, dollar signs and periods are reserved for use by the system
software. Any other character is illegal and, if used, will result in the
error message I (see Section 3.11). The following rules also apply to
user-defined symbols:
1. The first character must not be a number.
2. Each symbol must be unique within the first six characters.
3. A symbol may be written with more than six legal characters
but the seventh and subsequent characters are only checked
for legality, and are not otherwise recognized by the Assembler.

4. Spaces and tabs must not be embedded within a symbol.

A user-defined symbol may duplicate a permanent symbol. The value as-
sociated with a permanent symbol that is also user-defined depends upon its

use:

1. A permanent symbol encountered in the operator field is as-
sociated with its corresponding machine op-code.

2. If a permanent symbol in the operand field is also user-
defined, its user-defined value is associated with the symbol.
If the symbol is not found to be user-defined, then the cor-
responding machine op-code value is associated with the symbol.

3.3.3 Direct Assignment

A direct assignment statement associates a symbol with a value. When a
direct assignment statement defines a symbol for the first time, that sym-
bol is entered into the Assembler's symbol table and the specified value is
associated with it. A symbol may be redefined by assigning a new value to

a previously defined symbol. The newly assigned value will replace the

3-6

(-

previous value assigned to the symbol.

The general format for a direct assignment statement is
symbol = expression
The following conventions apply:
l. An equal sign (=) must separate the symbol from

- the expression defining the symbol.

2. A direct assignment statement may be preceded by
a label and may be followed by a comment.

3. Only one symbol éan be defined by any one direct
assignment statement. :

TN

4. Only one level of forward referencing is allowed.

Example of the two levels of forward referencing (illegal):

Y
Z
1

~~
N KX
nunn

X and Y are both undefined throughout pass 1 and will be listed on the
printer as such at the end of that pass. X is undefined throughout pass

2, and will cause a U error message.

(k Examples:
A=1 ;THE SYMBOL A IS EQUATED WITH THE VALUE 1
B = 'A-1§MASKLOW ;THE SYMBOL B IS EQUATED WITH THE EXPRES~
. ;SION'S VALUE.
C: D=3 ; THE SYMBOL D IS EQUATED WITH 3. THE
E: MOV #1,ABLE ;LABELS C AND E ARE EQUATED WITH THE
: ;NUMERICAL MEMORY ADDRESS OF THE MOV
;COMMAND.
3.3.4 Register Symbols
(”“\ The eight general registers of the PDP-11 are numbered 0 through 7. These

registers may be referenced by use of a register symbol, that is, a sym-
bolic name for a register. A register symbol is defined by means of a

3-7

direct assignment, where the defining expression contains at least one
term preceded by a % or at least one term previously defined as a register

symbol.
RP=3%4 ;DEFINE R AS REGISTER ¢
R3=R@+3 ;DEFINE R3 AS REGISTER 3
R4=1+%3 ;DEFINE R4 AS REGISTER 4
THERE=%2 ;DEFINE "THERE" AS REGISTER 2

It is important to note that all register symbols must be defined before
they are referenced. A forward reference to a register symbol will gener-

ally cause phase errors (see Section 3.10).

The % may be used in any expression thereby indicating a reference to
a register. Such an expression is a register expression. Thus, the state-
ment

CLR %6
will clear register 6 while the statement
CLR 6

will clear the word at memory address 6. In certain cases a register can
be referenced without the use of a register symbol or register expression.
These cases are recognized through the context of the statement and are
thoroughly explained in Sections 3.6 and 3.7. Two obvious examples of this

are:

JSR 5,SUBR ; THE FIRST OPERAND FIELD MUST
;ALWAYS BE A REGISTER.

CLR X(2) ;ANY EXPRESSION ENCLOSED IN

:() MUST BE A REGISTER. 1IN

;THIS CASE, INDEX REGISTER 2.

3.4 EXPRESSIONS

Arithmetic and logical operators (see Section 3.4.2) may be used to form
expressions. A term of an expression may be a permanent or user-defined
symbol, a number, ASCII data, or the present value of the assembly loca-
tion counter represented by the period. Expressions are evaluated from

left to right. Parenthetical grouping is not allowed.

3-8

(

C

ro

TN

Expressions are evaluated as word quantities. The operands of a
.BYTE directive (Section 3.8.5) are evaluated as word expressions before
truncation to the low-order eight bits.

A missing term or expression will be interpreted as 0. A missing
operator will be interpreted as +. The error code Q (Questionable syntax)

will be generated for a missing operator. For example,

A + -109 ;OPERAND MISSING

"will be evaluated as A + 0 - 100, and

TAG ! LA 177777 ;OPERATOR MISSING
will be evaluated as TAG ! LA+177777.

3.4.1 Numbers

The Assembler accepts both octal and decimal numbers. Octal numbers con-
sist of the digits 0 through 7 only. Decimal numbers consist of the digits
0 through 9 followed by a decimal point. If a number contains an 8 or 9

and is not followed by a decimal point, the N error code (see Section 3.10)
will be printed and the number interpreted as decimal. Negative numbers

may be expressed as a number preceded by a minus sign rather than in a two's
complement form. Positive numbers may be preceded by a plus sign although

this is not required.
If a number is too large to fit into 16 bits, the number is truncated
from the left. In the assembly listing the statement will be flagged with

a Truncation (T) error.

3.4.2 Arithmetic and Logical Operators

The arithmetic operators are:

+ indicates addition or a positive number

- indicates subtraction or a negative number

The logical operators are defined and illustrated below.

& indicates the logical AND operation

! indicates the logical inclusive OR operation

3-9

o

I SR N

> 2 oo o

HF = WS
Il

H e\ w

TR S S

I T Y
]

H o W

3.4.3 ASCII Conversion

When preceded by an apostrophe, any ASCII character (except null, rubout,

carriage return, line feed, or form feed) is assigned the 7-bit ASCII value

of the character (see Appendix A). For example,
'A

is assigned the value 1018.

When preceded by a quotation mark, two ASCII characters (not includ-

ing null, rubout, carriage return, line feed, or form feed) are assigned
the 7-bit ASCII values of each of the characters to be used. Each 7-bit
value is stored in an 8-bit byte and the bytes are combined to form a

word. For example, "AB will store the ASCII value of A in the low-order

(even) byte and the value of B in the high-order (odd) byte:

high-order byte \ low-order byte
|
|
B's value = 1 0 2 ' 1 0 1 = A's value
o 60 do1 061 ‘000 “oo01
e N — N~ Nt N
4 1 1 0 1
"AB = g41191
3.5 ASSEMBLY LOCATION COUNTER
The period (.) is the symbol for the assembly location counter. (Note dif-
ference of Program Counter. . # PC.See Section 3.6.) When used in the

operand field of an instruction, it represents the address of the first

word of the instruction. When used in the operand field of an assembler:

directive, it represents the address of the current byte or word.

ample,

For ex-

A: MOV #.,Rf ; . REFERS TO LOCATION A, I.E.,
; THE ADDRESS OF THE MOV INSTRUCTION

(# is explained in Section 3.6.9).

At the beginning of each assembly pass, the Assembler clears the loca-
tion counter. Normally, consecutive memory locations are assigned to each
byte of object data generated. However, the location where the object data
is stored may be changed by a direct assignment altering the location count-

er.
.=expression

The expression defining the period must not contain forward references

or symbols that vary from one pass to another. Examples:

-=509
FIRST: MOV .+10,COUNT ;THE LABEL FIRST HAS THE VALUE 5008
; .+10 EQUALS 5108. THE CONTENTS
;OF THE LOCATION 5108 WILL BE DE-
;POSITED IN LOCATION COUNT.
.=520 ; THE ASSEMBLY LOCATION COUNTER NOW
;HAS A VALUE OF 5208.
SECOND: MOV .,INDEX ; THE LABEL SECOND HAS THE VALUE 5208.

; THE CONTENTS OF LOCATION 5208,

;THAT IS, THE BINARY CODE FOR THE

; INSTRUCTION ITSELF, WILL BE DEPOSITED
;IN LOCATION INDEX.

Storage area may be reserved by advancing the location counter. For
example, if the current value of the location counter is 1000, the direct

assignment statement

.=.+100

will reserve lOO8 bytes of storage space in the program. The next instruc-
tion will be stored at 1100.

3.6 ADDRESSING

The Program Counter (register 7 of the eight general registers) always con-
tains the address of the next word to be fetched; i.e., the address of the
next instruction to be executed, or the second or third word of the current

instruction.
3-11

In order to understand how the address modes operate and how they as-
semble (see Section 3.6.11), the action of the Program Counter must be

understood. The key rule is:

Whenever the processor implicitly uses the Program Counter (PC)

to fetch a word from memory, the Program Counter is automatically

incremented by two after the fetch.

That is, when an instruction is fetched, the PC is incremented by two,
so that it is pointing to the next word in memory; and, if an instruction
uses indexing (see Sections 3.6.7, 3.6.8, and 3.6.10), the processor uses
the Program Counter to fetch the base from memory. Hence, using the rule

above, the PC increments by two, and now points to the next word.
The following conventions are used in this section:

a. Let E be any expression as defined in Section 3.4.

b. Let R be a register expression. This is any expres-
sion containing a term preceded by a % character or
a symbol previously equated to such a term.

Examples:
RO = 30 ; GENERAL REGISTER 0
Rl = RO + 1 ; GENERAL REGISTER 1
R2 =1 + 31 ; GENERAL REGISTER 2

c. Let ER be a register expression or an expression in
the range 0 to 7 inclusive.

d. Let A be a general address specification which pro--
duces a 6-bit address field as described in the
PDP-11 Handbook.

The addressing specification, A, may now be explained in terms of E, -
R, and ER as defined above. Each will be illustrated with the single oper-

and instruction CLR or double operand instruction MOV.

3.6.1 Register Mode

The register contains the operand.

Format: R

N

TN

/‘,—.\

Example:

RO = %0 ;DEFINE RO AS REGISTER 0
CLR RO ;CLEAR REGISTER 0

3.6.2 Deferred Register Mode

The register contains the address of the operand.

Format: @R or (ER)
Example:
CLR @Rl ;CLEAR THE WORD AT THE
or ;ADDRESS CONTAINED IN
CLR (1) ;REGISTER 1.

3.6.3 Autoincrement Mode

The contents of the register are incremented immediately after being used

as the address of the operand.l

Format: (ER) +

Examples:
CLR (RO)+ ;CLEAR WORDS AT ADDRESSES
CLR (RO+3)+ ;CONTAINED IN REGISTERS O, 3, AND 2 AND
CLR (2)+ ; INCREMENT REGISTER CONTENTS

;BY TWO.

1
a. Both JMP and JSR instructions using mode 2 (non-deferred Autoincre-
ment Mode) autoincrement the register before its use.

b. In double operand instructions of the addressing form %R, (R)+ or
%R,- (R) where the source and destination registers are the same, the
source operand is evaluated as the autoincremented or autodecremented

" value; but the destination register, at the time it is used, still con-

tains the originally intended effective address.
For example, if Register 0 contains 100, the following occurs:

MOV R, (@) + ; THE QUANTITY 102 IS MOVED TO LOCATION 100
MOV R@,-(9) ; THE QUANTITY 76 IS MOVED TO LOCATION 76

The use of these forms should be avoided, as they are not guaranteed
to remain in future PDP-1l's.

3.6.4 Deferred Autoincrement Mode

The register contains the pointer to the address of the operand. The con-
tents of the register are incremented after being used.

Format: Q@ (ER)+

Example:

CLR @(3)+ ;CONTENTS OF REGISTER 3 POINT
;TO ADDRESS OF WORD TO BE CLEARED
;BEFORE BEING INCREMENTED BY TWO

3.6.5 Autodecrement Mode

The contents of the register are decremented before being used as the ad-

dress of the dperand.l

Format: - (ER)

Examples:
CLR - (RO) ;DECREMENT CONTENTS OF REG-
CLR - (R0+3) ;ISTERS 0, 3, AND 2 BEFORE USING
CLR -(2) ;AS ADDRESSES OF WORDS TO BE CLEARED

3.6.6 Deferred Autodecrement Mode

The contents of the register are decremented before being used as the

pointer to the address of the operand.

Format: @- (ER)

1 _ .
See previous footnote.

AN

Example:

CLR @-(2) ;DECREMENT CONTENTS OF REG. 2
;BEFORE USING AS POINTER TO ADDRESS

;OF WORD TO BE CLEARED

3.6.7 Index Mode

Format: E (ER)

The value of an expression E is stored as the second or third word of the

instruction. The effective address is calculated as the value of E plus

the contents of register ER. The value E is called the base.

Examples:

CLR X+2(R1) ;EFFECTIVE ADDRESS IS X+2 PLUS
;THE CONTENTS OF REGISTER 1

CLR =-2(3) ;EFFECTIVE ADDRESS IS -2 PLUS
;THE CONTENTS OF REGISTER 3

3.6.8 Deferred Index Mode

An expression plus the contents of a register gives the pointer to the ad-

dress of the operand.

Format: @E (ER)
Example: .
CLR @14 (4) ; IF REGISTER 4 HOLDS 100, AND LOCA-
;TION 114 HOLDS 2000, LOC. 2000 IS
;CLEARED

3.6.9 Immediate Mode and Deferred Immediate (Absolute) Mode

The immediate mode allows the operand itself to be stored as the second or

third word of the instruction. It is assembled as an autoincrement of

register 7, the PC.

Format: #E

Examples:
MOV #100, RO ;MOVE AN OCTAL 100 TO REGISTER 0
MOV #X, RO ;MOVE THE VALUE OF SYMBOL X TO

; REGISTER 0

3-15

The operation of this mode is explained as follows:
The statement MOV #100,R3 assembles as two words. These are:

g127¢3
g908190

Just before this instruction is fetched and executed, the PC points
to the first word of the instruction. The processor fetches the first
word and increments the PC by two. The source operand mode is 27 (auto-
increment the PC). Thus, the PC is used as a pointer to fetch the oper-
and (the second word of the instruction) before being incremented by two,

to point to the next instruction.
If the #E is preceded by @, E specifies an absolute address.

3.6.10 Relative and Deferred Relative Modes

Relative Mode is the normal mode for memory references.

Format: E
Examples:
CLR 100 ; CLEAR LOCATION 100
MOV X,Y ;MOVE CONTENTS OF LOCATION X TO

; LOCATION Y

This mode is assembled as Index Mode, using 7, the PC, as the register.

The base of the address calculation, which is stored in the second or third
word of the instruction, is not the address of the operand. Rather, it is

the number which, when added to the PC, becomes the address of the operand.
Thus, the base is X - PC. The operation is explained as follows.

If the statement MOV 100,R3 is assembled at location 20, then the as-

sembled code is:

Location 20: g16 74893

Location 22: goggs 4

The processor fetches the MOV instruction and adds two to the PC so that
3-16 |

it points to location 22. The source operand mode is 67; that is, indexed
by the PC. To pick up the base, the processor fetches the word pointed to
by the PC and adds two to the PC. The PC now points to location 24. To
calculate the address of the source operand, the base is added to the desig-
nated register. That is, Base + PC = 54 + 24 = 100, the operand address.

Since the Assembler considers . as the address of the first word of the
instruction, an equivalent statement would be

MOV 100 ~-- 4(PC),R3

This mode is called relative because the operand address is calculated rela-
tive to the current PC. The base is the distance (in bytes) between the
opérand and the current PC. If the operator and its operand are moved in
memory so that the distance between the operator and data remains constant,
the instruction will operate correctly.

If E is preceded by @, the expression's value is the pointer to the
address of the operand.

3.6.11 Table of Mode Forms and Codes (6-bit (A) format only - see Sec-
tion 3.7)

Each instruction takes at least one word. Operands of the first six forms
listed below do not increase the length of an instruction. Each operand
in one of the other forms however, increases the instruction length

by one word.

Form Mode Meaning
R An Register
None of these @R or (ER) 1n Register n deferred
forms increase (ER) + 2n Autoincrement
the instruction @(ER)+ 3n Autoincrement deferred
length. - (ER) 4n Autodecrement
@- (ER) 5n Autodecrement deferred
E (ER) 6n Index
Any of these @E (ER) 7n Index deferred
forms adds a #E 27 Immediate
word to the Q#E 37 Absolute memory
instruction ' , reference
length . E 67 Relative
@QE 77 Relative deferred
reference

1. An alternate form for @R is (ER). However, the form @(ER)
is equivalent to @O (ER).

2. The form Q#E differs from the form E in that the second or
third word of the instruction contains the absolute address
of the operand rather than the relative distance between the
operand and the PC. Thus, the statement CLR @#100 will
clear location 100 even if the instruction is moved from
the point at which it was assembled.

3.7 INSTRUCTION FORMS

The instruction mnemonics are given in Appendix B. This section defines
the number and nature of the operand fields for these instructions.

In the table that follows, let R, E, and ER represent expressions as
defined in Section 3.4, and let A be a 6-bit address specification of the

forms:
E eE
R @R or (R)
(ER) + @ (ER) +
- (ER) @- (ER)
E(ER) @E (ER)
#E Q¥E
Table 3-1. Instruction Operand Fields
Instruction Form Example
Double Operand Op A,A MOV (R6)+,@QY
ingle Operand Op A CLR - (R2)
perate Op HALT
ranch ; Op E BR X+2
BLO .-4
- <(Fe o < -
where -128,,%(E---2)/22127,,
Subroutine Call ~ JSR ER,A JSR PC,SUBR
Subroutine Return RTS ER RTS PC
EMT /TRAP Op or EMT
Op E EMT 31
where 0ZEZ377,

The branch instructions are one word instructions. The high byte con-
tains the op code and the low byte contains an 8-bit signed offset (7 bits
plus sign) which specifies the branch address relative to the PC. The
hardware calculates the branch address as follows:

a) Extend the sign of the offset through bits 8-15.

b) Multiply the result by 2. This creates a word offset
rather than a byte offset.

c) Add the result to the PC to form the final branch ad-
7 dress.

The Assembler performs the reverse operation to form the byte offset
from the specified address. Remember that when the offset is added to the
PC, the PC is pointing to the word following the branch instruction; hence
the factor -2 in the calculation.

TN

Byte offset = (E-PC)/2 truncated to eight bits.
Since PC = .+2, we have
Byte offset = (E---2)/2 truncated to eight bits.

'<‘ The EMT and TRAP instructions do not use the low-order byte of the
word. This allows information to be transferred to the trap handlers in
the low-order byte. If EMT or TRAP is followed by an expression, the value
is put into the low-order byte of the word. However, if the expression is
too big (>3778) it is truncated to eight bits and a Truncation (T) error

occurs.

3.8 ASSEMBLER DIRECTIVES

Assembler directives (sometimes called pseudo-ops) direct the assembly

process and may generate data. They may be preceded by a label and

followed by a comment. The assembler directive occupies the operator
field. Only one directive may be placed in any one statement. One or
more operands may occupy the operand field or it may be void -- allow-
- able operands vary from directive to directive. ‘

3.8.1. .EOT

The .EOT directive indicates the physical End-Of-Tape though not the logical

Q 4 end of the program. If the .EOT is followed by a single line feed or
form feed, the Assembler will still read to the end of the tape, but

3-19

will not process anything past the .EOT directive. If .EOT is followed
by at least two line feeds or form feeds, the Assembler will stop before
the end of the tape. Either case is proper, but it should be understood

that even though it appears as if the Assembler has read too far, it
actually hasn't. (__?

If a .EOT is embedded in a tape, and more information to be as-
sembled follows it, .EOT must be immediately followed by at least two

line feeds or form feeds. Otherwise, the first line following the .EOT
will be lost. -

Any operands following a .EOT directive will be ignored. The .EOT
directive allows several physically separate tapes to be assembled as one
program. The last tape is normally terminated by a .END directive (see

Section 3.8.3) but may be terminated with .EOT (see .END emulation in
Section 3.9.4). '(

3.8.2 L.EVEN

The .EVEN directive ensures that the assembly location counter is even by
adding one if it is odd. Any operands following a .EVEN directive will
be ignored.

3.8.3 .END (

The .END directive indicates the logical and physical end of the source
program. The .END directive may be followed by only one operand, an ex-
pression indicating the program's entry point.

At load time, the object tape will be loaded and program execution will
begin at the entry point indicated by the .END directive. If the entry Q

point is not specified, the Loader will halt after reading in the object
tape.

3.8.4 .WORD

The .WORD assembler directive may have one or more operands, separated by
commas. Each operand is stored in a word of the object program. If there
is more than one operand, they are stored in successive words. The oper-

ands may be any legally formed expressions. For example,

.=142¢ (
SAL=§ \y
.WORD 177535, .+4,SAL ;STORED IN WORDS 142@, 1422, AND

:1424 WILL BE 177535, 1426, AND f.

3-20

s

Values exceeding 16 bits will be truncated from the left, to word
length.

A .WORD directive followed by one or more void operands separated by

commas will store zeros for the void operands. For example,

.=143¢0 ;ZERO, FIVE, AND ZERO ARE STORED
.WORD ,5, ;IN WORDS 1438, 1432, AND 1434.

An operator field left blank will be interpreted as the .WORD direc-
tive if the operand field contains one or more expressions. The first
term of the first expression in the operand field must not be an instruc-
tion or assembler directive unless preceded by a +, -, or one of the logi-

cal operators ! or &. For example,

.=444 ; THE OP-CODE FOR MOV, WHICH IS g19994,
LABEL: +MOV,LABEL ;IS STORED IN LOCATION 44g. 44¢ IS
;STORED IN LOCATION 442.

Note that the default .WORD will occur whenever there is a leading
arithmetic or logical operator, or whenever a leading symbol is encountered
which is not recognized as an instruction mnemonic or assembler directive.
Therefore, if an instruction mnemonic or assembler directive is misspelled,
the .WORD diréctive is assumed and errors will result. Assume that MOV is

spelled incorrectly as MOR:
MOR A,B
Two error codes can result: a Q will occur because an expression operator

is missing between MOR and A, and a U will occur if MOR is undefined. Two
words will be generated; one for MOR A and one for B.

3.8.5 .BYTE

The .BYTE assembler directive may have one or more operands separated by
commas. Each operand is stored in a byte of the object program. If multiple
operands are specified, they are stored in successive bytes. The operands

may be any legally formed expression with a result of 8 bits or less. For
example,

SAM=5 ;STORED IN LOCATION 41¢ WILL BE
=419 ;960 (THE OCTAL EQUIVALENT OF 48).
.BYTE 48.,SAM ;IN 411 WILL BE @gg5.

3-21

If the expression has a result of more than 8 bits, it will be trun-
cated to its low-order 8 bits and will be flagged as a T error. If an
operand after the .BYTE directive is left void, it will be interpreted as

zero. For example,

=420 ; ZERO WILL BE STORED IN
.BYTE , , ;BYTES 42, 421 AND 422.

3.8.6 .ASCII

The .ASCII directive translates strings of ASCII characters into their 7-

bit ASCII codes with the exception of null, rubout, carriage return, line

feed, and form feed. The text to be translated is delimited by a charac- -
ter at the beginning and the end of the text. The delimiting character may

be any printing ASCII character except colon and equal sign and those used

in the text string. The 7-bit ASCII code generated for each character will

be stored in successive bytes of the object program. For example, <
=59 ;THE ASCII CODE FOR "Y" WILL BE
.ASCII /YES/ ;STORED IN 5¢@, THE CODE FOR "E"
;IN 5¢1, THE CODE FOR "S" IN 5@2.
ASCII /5+3/2/ ; THE DELIMITING CHARACTER OCCURS
;AMONG THE OPERANDS. THE ASCII
;CODES FOR "5", "+", AND "3" ARE (
; STORED IN BYTES 583, 584, AND

;585. 2/ IS NOT ASSEMBLED.

The .ASCII directive must be terminated by a space or a tab.

3.9 OPERATING PROCEDURES

3.9.1 Introduction (

The Assembler enables you to assemble an ASCII tape containing PAL-11A
statements into an absolute binary tape. To do this, two or three
passes are necessary. On the first pass the Assembler creates a table
of user-defined symbols and their associated values, and a list of
undefined symbols is printed on the teleprinter. On the second pass the
Assembler assembles the program and punches out an absolute binary tape
and/or outputs an assembly listing. During the third pass (this pass is
optional) the Assembler punches an absolﬁte binary tape or outputs an

| assembly listing. The symbol table (and/or a list of errors) may be out-
put on any of these passes. The input and output devices as well as
various options are specified during the initial dialogue (see Section 3.9.3).(\
The Assembler initiates the dialogue immediately after being loaded and
after the last pass of an assembly.

3-22

3.9.2 Loading PAL-11A

PAL-11A is loaded by the Absolute Loader (see Chapter 6 for operating

procedures). Note that the start address of the Absolute Loader must be
in the Switch Register when loading the Assembler. This is because the
Assembler tape has an initial portion which clears all of core up to the

address specified in the Switch Register, and jumps to that address to
start loading the Assembler.

3.9.3 1Initial Dialogue

After being loaded, the Assembler initiates dialogue by printing on the
teleprinter:

*S

meaning "What is the Source symbolic input device?" The response may
be :

H meaning High-speed reader
L meaning Low-speed reader
T meaning Teletype keyboard

If the response is T, the source program must be typed at the terminal
once for each pass of the assembly and it must be identical each time it
is typed.

The device specification is terminated, as is all user response, by typ-
ing the RETURN key.

If an error is made in typing at any time, typing the RUBOUT key will
erase the immediately preceding character if it is on the current line.
Typing CTRL/U will erase the whole line on which it occurs.

After the *S guestion and response, the Assembler prints:

*B

meaning "What is the Binary output device?" The responses to *B are simi-

lar to those for *S:

H meaning High-speed punch
meaning Low-speed punch

meaning do not output binary tape
) () denotes typing the RETURN key)

In addition to I/O device specification, various options may be chosen.
The binary output will occur on the second pass unless /3 (indicating the
third pass) is typed following the H or L. Errors will be listed on the
same pass if /E is typed. If /E is typed in response to more than one in-
quiry, only the last occurrence will be honored. It is strongly suggested
that the errors be listed on the same pass as the binary output, since
errors may vary from pass to pass. If both /3 and /E are typed, /3 must
precede /E. The response is terminated by typing the RETURN key. Examples:

*B L/E Binary output on the low-speed punch and
the errors on the teleprinter, both during
the second pass.

*B H/3/E Binary output on the high-speed punch and
the errors on the teleprinter, both during
the third pass.

*B) Typing just the RETURN key will cause the Assembler
to omit binary output.

After the *B question and response, the Assembler prints?

*L

meaning "What is the assembly Listing output device?" The response to *L
may be:

meaning Low-speed punch (outputs a tab as a tab-rubout)
meaning High-speed punch

meaning Teleprinter (outputs a tab as multiple spaces)
meaning line Printer (8K version only)

meaning do not output listing
(&) denotes typing the RETURN key)

N, U 42 = ¢

TN

After the I/O device specification, pass and error list options simi-
lar to those for *B may be chosen. The assembly listing will be output on
the third pass unless /2 (indicating the second pass) is typed following
H, L, T, or P, Errors will be listed on the teleprinter during the same
pass if /E is typed. 1If both /2 and /E are typed, /2 must precede /E.

The response is terminated by typing the RETURN key. Examples:

*L L/2/E Listing on low-speed punch and errors
on teleprinter during second pass.

*L H Listing on high-speed punch during
third pass.

*L The RETURN key alone will cause the

Assembler to omit listing output.

After the *L question and response, the final question is printed on
the teleprinter:

*T

meaning "What is the symbol Table output device?" The device specification
is the same as for the *L question. The symbol table will be output at

the end of the first pass unless /2 or /3 is typed in response to *T. The
first tape to be assembled should be placed in the reader before typing

the RETURN key because assembly will begin upon typing the RETURN key in

response to the *T question. The /E option is not a meaningful response
to *T. Example:

*T T/3 Symbol table output on teleprinter at
end of third pass.

*T) » Typing just the RETURN key will cause the
Assembler to omit symbol table output.

The symbol table is printed alphabetically, four symbols per line.
Each symbol printed is followed by its identifying characters and by its
value. If the symbol is undefined, six asteriskes replace its value. The
identifying characters indicate the class of the symbol; that is, whether
it is a label, direct-assignment, register symbol, etc. The following

examples show the various forms:

ABCDEF 001244 (Defined label)

R3 = 3000003 (Register symbol)

DIRASM = 177777 (Direct assignment)

XYZ = khkkkk (Undefined direct assignment)
R6 = gERIAAE (Undefined register symbol)
LABEL = kkkkkk (Undefined 1label)

Generally, undefined symbols (including labels) will be listed

as undefined direct assignments.

Multiply-defined symbols are not flagged in the symbol table printout

but they are flagged wherever they are used in the program.

It is possible to output both the binary tape and the assembly list-
ing on the same pass, thereby reducing the assembly process to two passes
(see Example 1 below). This will happen automatically unless the binary
device and the listing device are conflicting devices or the same device
(see Example 2 below). The only conflicting devices are the teleprinter
and thé low-speed punch. Even though the Assembler deduces that three
passes are necessary, the binary and listing can be forced on pass 2 by
including /2 in the responses to *B and *L (see Example 3 below).

Example 1. Runs 2 passes:

*s H High-speed reader
*B H High-speed punch
*L P Line Printer
*T T Teleprinter

Example 2. Runs 3 passes:

*s H High-speed reader
*B H High-speed punch
*L H High-speed punch
*T T Teleprinter

3-26

Example 3. Runs 2 passes:

*s H High-speed reader

*B H/2 High-speed punch on pass 2
*L H/2 High-speed punch on pass 2
*T T Teleprinter

Note that there are several cases where the binary output can be
intermixed with ASCII output:

a. *B H/2 Binary and
*L H/2 listing to punch on pass 2
L «
b. *B L/E Binary to low-speed punch and

error listing to teleprinter
(and low-speed punch)

c. *B L/2/E Binary, error listing, and
*L T/2 listing to low-speed punch.

The binary so generated is loadable by the Absolute Loader as long as there
are no CTRL/A characters in the source program. The start of every block
on the binary tape is indicated by a 001 and the Absolute Loader ignores
all information until a 001 is detected. Thus, all source and/or error
messages will be ignored if they do not contain any CTRL/A characters
(octal 001).

ST

If a character other than those mentioned is typed in response to
a question, the Assembler will ignore it and print the question again.

Example:
*S H High-speed reader
*B Q Q is not a valid response
*B The question is repeated

If at any time you wish to restart the Assembler, type CTRL/P.

When no passes are omitted or error options specified, the Assembler

performs as follows:

3-27

PASS 1:

PASS 2:

PASS 3:

The functions of passes 2 and 3 will occur simultaneously on pass 2 if the

Assembler creates a table of user-defined symbols and

their associated values to be used in assembling the source

to object program. Undefined symbols are listed on the tele-
printer at the end of the pass. The symbol table is also
listed at this time. If an illegal location statement of the
form .=expression is encountered, the line and error code will
be printed out on the teleprinter before the assembly proceeds.
An error in a location statement is usually a fatal error in
the program and should be corrected.

Assembler punches the object tape, and prints the pass error
count and undefined location statements on the teleprinter.

Assembler prints or punches the assembly program listing, un-
defined location statements, and the pass error count on the
teleprinter.

binary and listing devices are different, and do not conflict with each

other (low-speed punch and Teletype printer conflict).

The following table summarizes the initial dialogue questions:

Printout

*S
*B
*L
*T

Inquiry

What is the input device of the Source symbolic tape?
What is the output device of the Binary object tape?
What is the output device of the assembly Listing?
What is the output device of the symbol Table?

The following table summarizes the legal responses:

Character

Response Indicated

Teletype keyboard or printer

Low-speed reader or punch

High-speed reader or punch

Line Printer (8K version only)

Pass 1

Pass 2

Pass 3

Errors listed on same pass (not meaningful in response to *S or
Omit function

3-28

*T)

Typical examples'of complete initial dialogues:

For minimal PDP-11 configuration:

*s L Source input on low-speed reader

*B L/E Binary output on low-speed punch
Errors during same (second) pass

*L T Listing on teleprinter during pass 3

*T T Symbol table on teleprinter at end of pass 1

For a PDP-11 with high-speed I/O devices:

*S H Source input on high-speed reader
*B H/E Binary output on high-speed punch,
Errors during same (second) pass.
*L No listing
*T T/2 Symbol table on teleprinter at end of pass 2

3.9.4 Assembly Dialogue

During assembly, the Assembler will pause to print on the teleprinter vari-
ous messages to indicate that you must respond in some way before the as-
sembly process can continue. You may also type CTRL/P, at any time, if you
wish to stop the assembly process and restart the initial dialogue, as men-
tioned in the previous section.

When a .EOT assembler directive is read on the tape, the assembler
prints:

EOF ?

and pauses. During this pause, the next tape is placed in the reader, and
RETURN is typed to continue the assembly. '

If the specified assembly listing output device is the high-speed
punch and if it is out of tape, or if the device is the Line Printer and

is out of paper, the Assembler prints on the teleprinterg

EOM ?

and waits for tape or paper to be placed in the device. Type the RETURN
key when the tape or paper has been replenished; assembly will continue.
Conditions causing the EOM ? message for an assembly listing device

are:

HSP LPT

No power No power

No tape Printer drum gate open
Too hot
No paper

There is no EOM if the line printer is switched off-line, although charac-
ters may be lost for this condition as well as for an EOM. If the binary
output device is the high-speed punch and if it is out of tape, the
Assembler prints:

EOM ?

*S
The assembly process is aborted and the initial dialogue is begun again.

When a .END assembler directive is read on the tape, the Assembler
prints:

END ?

and pauses. During the pause the first tape is placed in the reader, and
the RETURN key is typed to begin the next pass. On the last pass, the
.END directive causes the Assembler to begin the initial dialogue for the
next assembly.

If you are starting the binary pass and the binary is to be punched
on the low-speed punch, turn the punch on before typing the RETURN key
for starting the pass. The carriage return and line feed characters will
be punched onto the binary tape, but the Absolute Loader‘will ignore them.

If the last tape ends with a .EOT, the Assembler may be told to
emulate a .END assembler directive by responding with E followed by the

VAl

TN

ST

RETURN key. The Assembler will then print:

END ?

and wait for another RETURN before starting the next pass. Example:

EOF ? E

END ?

NOTE

When a .END directive is emulated with an E
response to the EOF? message, the error
counter is incremented.

To avoid incrementing the error counter,
place a paper tape containing only the line
.END in the reader and press the RETURN key
instead of using the E response.

3.9.5 Assembly Listing

PAL-11A produces a side-by-side assembly listing of symbolic source state-
ments, their octal equivalents, assigned absolute addresses, and error

codes, as follows:

EELLLLLL OO0000O SSS...... S
000000
000000

The E's represent the error field. The L's represent the absolute address.
The O's represent the object data in octal. The S's represent the source
statement. While the Assembler accepts 72lo characters per line on input,
the listing is reduced by the 16 characters to the left of the source state-

ment.

The above represents a three-word statement. The second and third
words of the statement are listed under the command word. No addresses pre-

cede the second and third words since the address order is sequential.

The third line is omitted for a two-word statement; both second and

third lines are omitted for a one-word statement.

3-31

For a .BYTE directive, the object data field is three octal digits.
Eor a direct assignment statement, the value of the defining expression
is given in the object code field although it is not actually part of the

code of the object program.

Each page of the listing is headed by a page number.

3.10 ERROR CODES

The error codes printed beside the octal and symbolic code in the assembly

listing have the following meanings:
Error Code Meaning
A Addressing error. An address within the instruction
is incorrect.
B Bounding error. Instructions or word data are being
assembled at an odd address in memory. The location

counter is updated by +1.

D o Doubly-defined symbol referenced. Reference was made
to a symbol which is defined more than once.

I Illegal character detected. Illegal characters which
are also non-printing are replaced by a ? on the list-
ing.

L Line buffer overflow. Extra characters on a line (more

than 72,,) are ignored.

M Multiple definition of a label. A label was encoun-
tered which was equivalent (in the first six charac-
ters) to a previously encountered label.

N Number containing 8 or 9 has no decimal point.

P Phase error. A label's definition or value varies
from one pass to another.

Q Questionable syntax. There are missing arguments or
the instruction scan was not completed or a carriage
return was not immediately followed by a line feed or
form feed.

R Register-type error. An invalid use of or reference
to a register has been made.

S Symbol table overflow. When the quantity of user-
defined symbols exceeds the allocated space available
in the user's symbol table, the assembler outputs the
current source line with the S error code, then returns
to the initial dialogue.

w
|

32

T Truncation error. A number generated more than 16
bits of significance or an expression generated more
than 8 bits of significance during the use of the .BYTE
directive. :

U Undefined symbol. An undefined symbol was encountered
during the evaluation of an expre581on. Relative to
the expression, the undefined symbol is assigned a
value of zero.

3.11 SOFTWARE ERROR HALTS

PAL-11A loads all unused trap vectors with the code
.WORD .+2,HALT

so that if the trap does occur, the processor will halt in the second word
of the vector. The address of the halt, displayed in the console address
register, therefore indicates the cause of the halt. In addition to the
halts which may occur in the vectors, the standard IOX error halt at loca-

tion 40 may occur (see Chapter 7).

Address of Halt Meaning
12 Reserved instruction executed
16 Trace trap occurred
26 Power fail trap
32 EMT executed
40 IOX detected error

See Appendix B for summaries of PAL-11A features.

CHAPTER 4
EDITING THE SOURCE PROGRAM

COMMAND MODE AND TEXT MODE

COMMAND DELIMITERS
Arguments
The Character Location Pointer (Dot)
Mark
Line-Oriented Command Properties
The Page Buffer

COMMANDS
Input and Output Commands
Open
Read
List and Punch
Next
Form Feed and Trailer
Procedure with Low=Speed Punch
Commands to Move Dot and Mark

e o
(6; I -~ S =

bbhbhhhhbbhu&n?&hhbh& L A
FPHFRWOWWOWWOVWODOOONNNNNNNAAUUE D hDLWWWNDND

I T - S~ S SO S NG NG NG G NG N SO O SO G SO N N N SO O
9. -le e o e o e, s " &8, ‘W ¢ '@ ©®. ' e ' e e e 'S ‘e «e, e
O &SRB ED WWWWWWWWWWWWWWwWwWwWwww NNNMNNN
e, o ol @ @7 Wl 40 4 o
BB BRWWWNNNDN R
e @ ‘Wl e el e
o Ui WN
P A O

Sl Beginning and End &
P22 Jump and Advance =5
SNt D Mark =
ol Search Commands i
Dl Get P
ST, Whole =
. Commands to Modify Text =
i Al Insert =
o Sreledid Delete and Kill -10
«3.4.3 Change and Exchange -11
OPERATING PROCEDURES 4-12
Sk Error Correction 4-12
4.2 Starting 4-13
.4.3 Restarting 4-14
4.4 Creating a Paper Tape 4-14
.4.5 Editing Example 4-14
3 SOFTWARE ERROR HALTS 4-22

;//\\

CHAPTER 4

Editing the Source Program, ED-11

The PDP-11 Text Editor program (ED-11) enables you to display your source
program (or any text) on the teleprinter, make corrections or additions
to it, and punch all or any portion of the program on paper tape. This
is accomplished by typing simple one-character commands on the keyboard.

The Editor commands can be grouped according to function:
1. input/output;

2. searching for strings of characters;

3. positioning the current character location pointer;

4. inserting, deleting, and exchanging text portions.

All input/output functions are handled by IOX, the PDP-11 Input/Output
Executive (see Chapter 7).

4.1 COMMAND MODE AND TEXT MODE

Whenever ED-11 prints an * on the teleprinter, you may type a command
to it. (Only one command per line is acceptable.) The Editor is then
said to be in Command Mode. While most commands operate exclusively in
this mode, there are five ED-11 commands that require additional infor-

mation in order for the commands to be carried out. The Editor goes

‘into Text Mode to receive this test.

Should a nonexistent command be typed or a command appear in incorrect
format, ED-11 will print a ?. This will be followed by an * at the begin-
ning of a new line indicating that the Editor is in Command Mode.

Editor processing begins in Command Mode. When you type a command,
no action occurs until you follow it by typing the RETURN key (sometimes
symbolized as)). If the command is not a text-type command, typing the
RETURN key will initiate the execution of the command and ED-11 will
remain in Command Mode. However, if the command is a text-type command
(Insert, eXchange, Change, Get, or wHole), typing the RETURN key will
cause the Editor to go into Text Mode. At this time you should type

4-1

the text to be operated on by the command. This can include the non-
printing characters discussed below, as well as spaces and tabs (up to
eight spaces generatéd by the CTRL/TAB keys).

Note that typing the RETURN key always causes the physical return
of the Teletype ball to the beginning of the line, and automatically
generates a line feed thereby advancing the carriage to a new line.

In Text Mode, the RETURN key not only serves these mechanical functions,
allowing you to continue typing at the beginning of a new line, but at
the same time it enters a carriage return and line feed character into
the text. (A carriage return not followed by a line feed cannot,
therefore, be entered from the keyboard.)

These are both counted as characters and can be edited along
with the printing characters (as can the form feed, discussed in
Section 4.2.5). When you wish to terminate Text Mode and reenter
Command Mode, you must type the LINE FEED key (sometimes symbolized
as +). A typed LINE FEED is not considered to be part of the text

unless it is the first character entered in Text Mode.

4.2 COMMAND DELIMITERS

4.2.1 Arguments

Some ED-11 commands require an argument to specify the particular portion
of text to be affected by the command or how many times to perform the com-
mand. In other commands this specification is implicit and arguments are

not allowed.
The ED-11 command arguments are described as follows:

1. n stands for any number from 1 to 32767

(215—1) and may,
except where noted, be preceded by a + -

10
or

If no sign precedes n, it is assumed to be a positive
number.

Where an argument is acceptable, its absence implies
an argument of 1 (or -1 if a - is present).

The role of n varies according to the command it is
associated with.

2. 0 refers to the beginning of the current line.

3. @ refers to a marked (designated) character location
(see Section 4.2.3).

4. / refers to the end of text in the Page Buffer.

The roles of all arguments will be explaihed further with the cor-
responding commands which qualify them.

4.2.2 The Character Location Pointer (Dot)

Almost all ED-11 commands function with respect to a movable reference
point, Dot. This character pointer is normally located between the most
recent character operated upon and the next character; and, at any given
time, can be thought of as "where the Editor is" in your text. As will
be seen shortly, there are commands which move Dot anywhere in the text,
thereby redefining the "current location" and allowing greater facility
in the use of the other commands.

4.2.3 Mark

In addition to Dot, a secondary character pointer known as Mark also exists
in ED-11. This less agile pointer is used with great effect to mark or
"remember" a location by moving to Dot and conditionally remaining there
while Dot moves on to some other place in the text. Thus, it is possible
to think of Dot as "here" and Mark as "there". Positioning of Mark, which

is referenced by means of the argument @, is discussed below in several
commands.

4.2.4 Line-Oriented Command Properties

ED-11 recognizes a line as a unit by detecting a line-terminator in the
text. This means that ends of lines (line feed or form feed characters)
are counted in line-oriented commands. This is important to know, parti-
cularly if Dot, which is a character location pointer, is not pointing at
the first character of a line.

In such a case, an argument n will not affect the same number of

4-3

lines (forward) as its negative (backward). For example, the argument -1

applies to the character string beginning with the first character following
the second previous end-of-line character and ending at Dot; argument +1 ap- (;A
plies to the character string beginning at Dot and ending at the first end-
of-line character. If Dot is located, say, in the center of a line, notice

that this would affect 1-1/2 lines back or 1/2 line forward, respectively:

Example of List Commands -1L and +1L:

Text Command Printout
CMPB ICHAR, ##33 *-1L BEQ SALT
BEQ SALT CMPB I
CMPB HAR, #175 *+1L \ :
BNE LACE - CHAR, #175 Dot remains
. 1 here
Dot is here ~

4.2.5 The Page Buffer

The Page Buffer holds the text being edited. The unit of source data that

is read into the Page Buffer from a paper tape, is the page. Normally, a
page is terminated, and therefore defined by a form feed (CTRL/FORM) in the
source text wherever a page is desired. (A form feed is an acceptable Text (
Mode character.) Overflow, no-tape, or reader-off conditions can also end

a page of input (as described in Section 4.3.1.2). Since more than one

page of text can be in the buffer at the same time, it should be noted that
the entire contents of the Page Buffer are available for editing.

4.3 COMMANDS

4.3.1 Input and Output Commands

Three commands are available for reading in a page of text. The Read com-
mand (Section 4.3.1.2) is a specialized input command; the Next command
(Section 4.3.1.4) reads in a page after punching out the previous page;
and the wHole command (Section 4,3.3.2) reads in and punches out pages

of text as part of a search for a specified character string.

Output commands either list text or punch it on paper tape. The List
command causes specified lines of text to be output on the teleprinter so
that they may be examined. Paper tape commands (Next and wHole also per-
form input) provide for the output of specified pages, lines, form feeds

(for changing the amount of data that constitutes a given page), and blank

4-4

N

tape. Note that the process of outputting text does not cause Dot to
move.
4.3.1.1 Open

The Open command (0) should be typed whenever a new tape is put in the

reader. This is used when the text file being edited is on more than
one paper tape.

Note also, that if the reader is off at the time an input command is
given, turning the reader on must be followed by the Open command.

4.3.1.2 Read

One way of getting a page of text into the Page Buffer so that it can be
edited is by means of the Read (R) command. The command R causes a page of
text to be read from either the low-speed reader or high-speed reader (as
specified in the starting dialogue, Section 4.4.2), and appended to the
contents (if any) of the Page Buffer.

Text will be read in until either:

1. A form feed character is encountered;

2. The page buffer is 128 characters from being
filled, or a line feed is encountered after the
buffer has become 500 characters from being filled;

3. The reader is turned off, or runs out of paper tape
(see Open command, Section 4.3.1.1).

Following execution of an R command, Dot and Mark will be located at
the beginning of the Page Buffer.

A 4K system can accommodate about 4000 characters of text. Each addi-
tional 4K of memory will provide space for about 8000 characters.

NOTE

An attempt to overflow the storage area will
cause the command (in this case, R) to stop
exXecuting. A ? will then be printed, followed
by an * on the next line indicating that a com-
mand may be typed. No data will be lost.

4-5

4.3.1.3 List and Punch

Output commands List (L) and Punch (P) can be described together, as they
differ only in that the device addressed by the former is the teleprinter,
and the device addressed by the latter is the paper tape punch. Dot is

not moved by‘these commands .

nL Lists | the character string beginning at Dot and

nP - Punches} ending with the nth end-of-line

-nL Lists the character string beginning with the

-nP Punches first character following the (n+l)th pre-
vious end-of-line and terminating at Dot

oL Lists \ the character string beginning with the

op Punchesj first character of the current line and (
ending at Dot -

QL Lists the character string between Dot and the

ep Punches Marked location

/L Lists the character string beginning at Dot and

/P Punches) ending with the last character in the Page

Buffer

In addition to the above List commands, there are three special List com-

mands that accept no arguments.

The current line is defined as the line

containing Dot, i.e., from the line feed (or form feed) preceding Dot to

the line feed (or form feed) following Dot.

\' Lists the entire line containing Dot ,
< Same as -1L. If Dot is located at the (
beginning of a line, this simply lists
the line preceding the current line
> Lists the line following the current line
Examples:)
TEXT COMMANDS PRINTOUT
CMPB ICHAR, ##833 A" CMPB HAR, #175 -
BEQ S$ALT < BEQ
CMPB HAR, #175 - CMPB I
LACE > BNE PLACE

Dot is here.

Dot remains here!

A~

N

4.3.1.4 Next

Typing nN punches out the entire contents of the Page Buffer (followed by

a trailer of blank tape if a form feed is the last character in the buffer),
deletes the contents of the buffer, and reads the Next page into the buf-
fer. It performs this sequence n times. If there are fewer than the n
pages specified, the command will be executed for the number of pages ac-
tually available, and a ? will be printed out. Following execution of a
Next, Dot and Mark will be located at the beginning of the Page Buffer.

4,3.1.5 Form Feed and Trailer

F Punches out a Form feed character and four inches of
blank tape

nT Punches out four inches of Trailer (blank) tape n times

4.3.1.6 Procedure with Low-Speed Punch

If the low speed punch is the specified output device (see Section 4.4.2),
the Editor pauses before executing any tape command just typed (Punch,

Form feed, Trailer, Next, wHole). The punch must be turned on at this time,
after which, typing the SPACE bar initiates the execution of the command.
Folldwing completion of the operation, the Editor pauses again to let you
turn the punch off. When the punch has been turned off, typing the SPACE
bar returns ED-11 to Command Mode.

4.3.2 Commands to Move Dot and Mark

4.3.2.1 Beginning and End

B Moves Dot to the Beginning of the Page Buffer

E Moves Dot t9 the End of the Page Buffer (see also /J and /A
below)

4.3.2.2 Jump and Advance

nJ Jumps Dot forward past n nA Advances Dot forward past n
characters ends-of-lines to the begin-
ning of the succeeding line

-nJ Moves Dot backward past n ~hA Moves Dot backwards across n ends-
characters of-lines and positions Dot immedi-

ately after n+l ends of lines, i.e.,

at the beginning of the -n line.

0J or 0A - Moves Dot to the beginning of the current line

@J or @A Moves Dot to the Marked location

/J or /A Moves Dot to the end of the Page Buffer (see also
E above)

4-7

Notice that while n moves Dot n characters in the Jump command, its role
becomes that of a line counter in the Advance command. However, because
0, @, and / are absolute, their use with these commands overrides line/
character distinctions. That is, Jump and Advance perform identical func-
tions if both have either 0, @ or / for an argument.

4.3.2.3 Mark

The M command marks ("remembers") the current position of Dot for later
reference in a command using the argument @. Note that only one position at
a time can be in a marked state. Mark is also affected by the execution of
those commands which alter the contents of the Page Buffer:

c D H I K N R X

4.3.3 Search Commands

4.3.3.1 Get

The basic search command nG starts at Dot and Gets the nth occurrence of
the specified text in the Page Buffer. If no argument is present, it is
assumed to be 1. When you type the command, followed by the RETURN key,
ED-11 will go into Text Mode. The character string to be searched for must
now be typed. (ED—ll will accept a search object of up to 42 characters
in length.) Typing the LINE FEED key terminates Text Mode and initiates

the search.

This command sets Dot to the position immediately following the found
character string, and a OL listing is performed by ED-11. If a carriage
return, line feed, or form feed is specified as part of the search object,
the automatic OL will only display a portion of text -- the part defined
as the last line. Where any of these characters is the last character of
 the search object, the OL will of course yield no printout at all.

If the search is unsuccessful, Dot will be at the end of the Page Buf-
fer and a ? will be printed out. The Editor then returns to Command Mode.

Examples:

1. Text Command Printout
MOV @RMAX, @5 2GJ BEQ CK
ADD #6, (R5)+ CK+
CLR $CK3
TST R2
BEQ CKCR
Dot was here. Dot is now hereée.
2. CMPB ICHAR, #RUBOUT G< BR
BEQ SITE TE J
BR PUT , BR+Y
Dot . Dot

4.3.3.2 wHole

A second search command, H, starts at Dot and looks through the wHole text
file for the next occurrence of the character string you have specified

in Text Mode. It combines a Get and a Next such that if the search is not
successful in the Page Buffer, the contents of the buffer are punched on
tape, the buffer contents are deleted, and a new page is read in, where

the search is continued. This will proceed until the search object is found

or until the complete source text has been searched. In either case, Mark

will be at the beginning of the Page Buffer.

If the search object is found, Dot will be located immediately follow-.
ing it, and a OL will be performed by ED-11. As in the Get command, if
the search is not successful Dot will be at the end of the buffer and a ?
will appear on the teleprinter. Upon completion of the command, the Editor
will be in Command Mode. No argument is allowed. Note that an H command
specifying a nonexistent search object can be used to close out an edit,
i.e., copy all remaining text from the input tape to the output tape.

4.3.4 Commands to Modify the Text

4.3.4.1 Insert

The Insert command (I) allows text to be inserted at Dot. After I is typed
(followed by the typing of the RETURN key), the Editor goes into Text Mode
to receive text to be inserted. Up to 80 characters per line are accept-
able. Execution of the command occurs when the LINE FEED key (which does

4-9

not Insert a line feed character unless it is the first key typed in Text
Mode) is typed terminating Text Mode. At this point, Dot is located in

the position immediately following the last inserted text character. If
the Marked location was anywhere after the text to be Inserted, Dot becomes
the new Marked location.

During an insert, it sometimes happens that the user accidentally types
CTRL/P rather tharn SHIFT/P (for @), thus deleting the entire insert (see
Section 4.4.1). To minimize the effect of such a mistake, the insert may
be terminated every few lines and then continued with a new Insert command.

As with the Read command, an attempt to overflow the Page Buffer will
cause a ? to be printed out followed by an * on the next line indicating
that a command may be typed. All or part of the last line typed may be
lost. All previously typed lines will be inserted. Examples:

Text Command Effect
1. MOV #8.,EKQ 1J MOV #8.,EKOC
CNvY
Dot Dot
2. Inserting a carriage return (and automatic line feed) :
CLR RICLR R2 1J CLR R1
< : CLR R2
Do ¥
3. Inserting a single line feed:
IJ)

LOOK WHAT HAPPENS HERE ¥ LOOK WHAT
¥ HAPPENS HERE

Dot | 4

Dot

4.3.4.2 Delete and Kill

These commands are closely related to each other; they both erase specified
teXt from the Page Buffer. The Delete command (D) differs from the Kill
command (K) only in that the former accepts an argument, n, that counts
characters to be removed, while the latter accepts an argument, n, that
counts lines to be removed. 0, @, and / are also allowed as arguments.
After execution of these commands, Dot becomes the Marked location.

4-10

SN

nD Deletes the following n nK Kills the character string

characters beginning at Dot and ending
at the nth end-of-line
-nD Deletes the previous n -nK Kills the character string
characters beginning with the first
character following the (n+l)th
previous end-of-line and end-
ing at Dot
0D or OK Removes the current line up to Dot
@D or' @K Removes the character string bounded by Dot and Mark
/D or /K Removes the character string beginning at Dot and

ending with

Text
1. ;CHECK THE MOZXDE
Dot
2. ;IS IT A TAB,OR
;IS IT A CR
Dot

4.3.4.3 Change and eXchange

the last character in the Page Buffer

Command Effect
-2D ;CHECK THE M?PE
Dot
2K ;IS IT A TAB
Dot

The Change (C) and eXchange (X) commands can be thought of as two-phase

commands combining, respectively, an Insert followed by a Delete, and

an Insert followed by a Kill.

After the Change or eXchange command is

typed, ED-11 goes into Text Mode to receive the text to be inserted. If

+n is used as the argument, it is then interpreted as in the Delete (charac-

ter-oriented) or Kill (line-oriented), and accordingly removes the indicated

text. 0, @, and / are also allowed as arguments.

nC Changes the following nX eXchanges the character

XXXX n characters
XXXX

XXXX string beginning at Dot and
XXXX ending at the nth end-
of-1line

-nC Changes'the previous -nX eXchanges the character

XXX n characters

XXX string beginning with
the first character fol-
lowing the (n+l)th pre-
vious end-of-line and
ending at Dot

0C or 0X Replaces the current line up to Dot

XXXX XXXX
XXXX XXXX

4-11

@c or @X Replaces the character string bounded by Dot

XXX XXX and the Marked location

XXX XXX

/C or /X Replaces the character string beginning at Dot

XXX XXX and ending with the last character in the Page
Buffer.

Again, the use of absolute arguments 0, @, and / overrides the line/character
distinctions that n and -n produce in these commands.

If the Insert portion of a Change or eXchange is terminated because of
attempting to overflow the Page Buffer, data from the latest line may have
been lost, and text removal will not occur. Such buffer overflow might be
avoided by separately executing a Delete or Kill followed by an Insert, rather
than a Change or éXchange, which does an Insert followed by a Delete or Kill.

Examples:
Text Command Effect
;A.LINE FEED IS HERE —9C‘) ;A TAB, IS HERE
TAB+Y

; THIS 2X < ; THIS

;IS ON Dot PAPERY ;IS ON

: FOUR ; PAPER
<;'L1NES '\

Dot Dot

4.4 OPERATING PROCEDURES

4.4.1 Error Corrections

During the course of editing a page of the program, it may become necessary
to correct mistakes in the commands themselves. There are four special

commands which do this:

a. Typing the RUBOUT key removes the preceding typed character,
if it is on the current line. Successive RUBOUTs remove pre-
ceding characters on the line (including the SPACE), one charac-
ter for each RUBOUT typed.

b, The CTRL/U combination (holding down the CTRL key and typing
U) removes all the characters in the current line.

c. CTRL/P cancels the current command in its entirety. This in-
cludes all the current command text just typed, if ED-11 was
in Text Mode. Care should be taken in not using another CTRL/P
before typing a line terminator as this will cause an ED-11 re-
‘start (see d. below). If CTRL/P is typed while

a found search object of a Get or wHole is being
o printed out, the normal position of Dot (just after
(} the specified search object) is not affected.

CTRL/P should not be used while a punch operation
is in progress as it is not possible to know exactly
how much data will be output.

d. Two CTRL/P's not interrupted by a typed line termi-
nator will restart ED-11, initiating the dialogue
described in Section 4.4.2.

After removing the incorrect command data, the user can, of course,

directly type in the desired input.

4.4.2 Starting
The Editor is loaded by the Absolute Loader (see Chapter 6, Section 6.2.2)
and starts automatically. Once the Editor has been loaded, the following

sequence occurs:

ED-11 Prints User Types
*T L < (if the Low-speed Reader is to be used for
source input)
H.J (if the High-speed Reader is to be used for
source input)
*0 LJ (if the Low-speed Punch is to be used for
edited output)
H) (if the High-speed Punch is to be used for

edited output)

If all text is to be entered from the keyboard (i.e., via the Insert
command), either L or H may be specified for Input.

| If the output device is the high-speed punch (HSP), the Editor enters
Command Mode to accept input. Otherwise, the sequence continues with:

LSP OFF? 2/ (when Low-speed Punch (LSP) is off)

Upon input of < from the keyboard, the Editor enters Command Mode

and is ready to accept input.

4.4.3 Restarting

To restart ED-11, type CTRL/P twice. This will initiate the normal start- (*;‘
ing dialogue described in Section 4.4.2. If the Low-speed Reader (LSR)

is in operation it must first be turned off. The text to be edited should

be loaded (or reloaded) at this time.

4.4.4 Creating a Paper Tape

Input commands assume that text will be read in from a paper tape by means

of the low-speed reader or high-speed reader. However, the five commands

that go into Text Mode enable the user to input from the keyboard. The

Insert command, in particular (Section 4.3.4.1) can be useful for enter-

ing large quantities of text not on paper tape. The Page Buffer can thus

be filled from the keyboard, and a paper tape actually created by then using (

a command to punch out the buffer contents.

4.4.5 Editing Example

The following example consists of three parts:
a. The marked up source program listing indicating the desired (\
changes.

b. The ED-11 commands to implement those changes (with comments
on the editing procedure).

REMINDER
Typing the RETURN key terminates Command)
Mode in all cases. In commands which then (
go into Text Mode, typing the LINE FEED key
(symbolized as ¥) produces the terminator.

c. The edited text.

4-14

TN

PART I Original Source for Edit
1COMEON TNPUT ROUTINE FOR UUSE BY NON FILE DEVICES

FINPUTT &DC

CLR
MOV
MOV

FCKMODE S I TH
RNE

ICHAR, (R5) ¢

-(LS)
(R5)+,RMAX
(R5)+,M0DADR

EVNDATTF, #ASCT
CKBIN

JUPDATE CKSUM

JCI EAR DONE

JGET ADR MAX

IGFT ADR MODE

JRS NOW POINTS TO POINTER

3IS THIS ASCII
INO===TRY BINARY

$CKNUL: TSTB 1CHAR J1ASCI1~==1S CHAR A NULL
REQ CK IYES=--NO GO
- ILOOK AT MODE TO SEE IF
§CKPARI FITR @MODADR, #PARSIT JSUPPOSED TO CHECK PARITY?
RNE PAROK INO
MOVB ICHAR, OCHAR IYES===CK IT
JSR R7 s PARGEN
SUB 1CHAR, OCHAR b
REQ PAROK . 10K?
o LIS #PARERR,®@MODADR INO==~SET ERR BIT
PAROK: LR CCHAR }
EIC #177203,1CHAR JSTRIP PARITY .
CMPB ®@1@(RADD),#KBD 11S THIS KBD INPUT
BNE 0K IND
TSTB EKGCNT JYES--=DONE EKO OF LAST?
REQ $0K IYES
_ aLR ICHAR INO=~=DROP NEW CHAR
$JP2CK1 UMP CRA— DUN
1WHAT 18 THE CHAR
$0K: CMPB ICHAR, #CTRLC 11S IT A +C
RNE ¥ 0 LDKWé
MOV #LUPC,0CHAR IYES-=ECHO *C
INC RDUN o _
MOV #ABRTAD,20(R6) 1DIDDLE RETURN ADR
RR PLUSY

CKUPP:

AR, #CTRLP

CMPR

REQ
RR

1CHAR, #RUBOUT

CK
PUT

11S IT A P

IYEZ==D1D HE/SET UP
RESTART /ADR?

JTKIS 1S NOT KBD INPUT |
D JFORMATTED AND

S o - . L. N)”.SCI] (_/_’D
.. . o C:/“—’) UNHMWMT759
11S THIS A RUBOUT -

JIYES===1GNORE IT
INO===

Zz 7 < 4 . y
ICHARZ#RUBOUT ‘YES’ =1S AHAR rRUBUT?
CKUPL INO :j
AR /s —
4-15

R

A, ,
» IS \
CHAR ’%4’”L77%&05;>(:

RR EKD
CKTAR: CMPR 1CHAR, #HTAB J1S 1T A TAB
RNE CKCR INO
MOV #BLNKS, OCHAR JYES~==ECHO BLANKS
MOV TABCNT,EKOCNT $SET UP COUNTER
AR PUT)
CKCR: CMPB ICHAR, #CR 11S IT A CR?
BNE $CK3 INO
MOV #CRLF,0OCHAR JIYES==~ECHO CRLF
TNC ROUN _
RR PLUS1 1
_ ALT
sckit CMPB ICHAR, #2333
REQ SALT
CMPR ICHAR, #175
REQ SALT
CMPR JICHAR, #176
. RNE CKiP— EX
M-Lli—-——?‘{‘-“ #6506 E6HAR —<
A— MOV #175, ICHAR
ﬂ+%@————4%Hﬁb——‘\‘~?:r_:#9L77
CKLFI CMPB ICHAR, #LF
RNE CKFF
1NC ROUN
RR PUT
CKFF 3 MOV 1CHAR) OCHAR
CMPR ICHAR, #FF
RNE PUT
MOV #8, ,EKOCNT
MoV BLFLF)OCHAR

RR PUT

4-16

TN

TN

Part II:

Assume that ED-11 has been started, is in Command Mode, and the tape is in

the reader.

*R

*H
2CK: ¥
$JP2CK:

*G
CKy

Underlined

Editing Session

matter indicates ED-11 output.
;Reads in a page of text
;Searches entire program for 2CK: —

;when found ED-11 performs a OL

;jSearches current page for next CK —
;when found ED-11 performs a OL

;OK0 replaces last 5 characters (CKUPP)
;Dot is moved 6 lines ahead (including

;9 lines are killed starting with CKUPP:

;Next line is listed - Dot is not moved

;Dot is moved 1 line ahead to point to

;Following comments replace the next 4

;Dot is moved to the beginning of the

SJP2CK JMP CK
*I ;Inserts DUN following CK
DUNY
*G ;Searches for next CKUPP -
CKUPPY ;when found ED-11 performs a 0L
BNE CKUPP
*-5C
OKg+
*6A
;a blank line)
*9K
*1,
- ; THIS IS NOT KBD INPUT
‘SI ;Blank line is inserted
¥
*A
- ;character 0 of OKO:
*4X
;lines.
; FORMATTED AND UNFORMATTED
:ASCII ARE HANDLED THE SAMEY
*G ;Searches for next CKINP: -—
CKINP: v ;0L printout occurs when found
CKINP:
*ga
;current line.
*/K

;The rest of the page is killed (3 lines)

2 (R5) ;BC=g?

;Current page is punched out on paper tape -
;a2 new page is read in

:The next line is listed - Dot is not moved

;15 lines are killed starting with TST

;1 blank line and 1 line of text
;are listed - Dot is not moved

;IS IT A TAB

SCKALT:

*G
7334

$CKALT:

CMPB ICHAR, #8433

CMPB ICHAR, #833

*T

*G
CKLF+

BNE CKLF

*-2C
EXY

*27

;Searches for 2nd occurrence of $CK3 -
;0L printout verifies it is found

;ALT replaces preceding character
;Lists entire current line to verify
;the above -C result

;Searches for the 033 to position Dot

; for next command -- 0L occurs

;'the following text is inserted in the
;comment field
;IS CHAR AN ALTOMODE?

;:Searches for next CKLF -- 0L occurs

;EX replaces the preceding two characters
; (LF)

;Jumps Dot past the carriage return and
;line feed characters

;Kills next line (starting with $ALT:)

;jInserts $ALT: at beginning of the fol-
; lowing line

;Advances Dot past 1 line feed to the
;beginning of the next line

;Marks the position of Dot

;Moves Dot to the beginning of the cur-
;rent page

;Punches out the lines from Dot to the
;position just marked - Dot not moved

;Moves Dot from the beginning of the
;page to the marked position

;Kills the next 2 lines

PART III Edited Source

160V ON TWFUT KOUTINF FOR USE BY NON FILE DEVICES

§INPUITE ADD 1C1AR, (RY) * JUPDATE CKSUM

] -(L3) 1CI EAR DNNE

rFOV (H45) 4 g RMAX IGET ADR MAX

MOV (k5)+,MOCADR 1GFT ADR “0DE

JRS NOW POINTS TO POINTER

SCKMNDE L RITE @MODATIE, #ASCITI 318 THIS ASCII

RNE CKRIN INO===TRY BINARY
$CKNULT TSTH 1CHAR JASCIl===~1S CHAR A NULL

FES CK }YES==NO GO -

JLONK AT MCNE TO SEE IF
SCKPARY EITE €10NDADR,#PARBIT 1SUPPOSED TO CHECK PARITY?

RNE PAROK IND

MOVR 1CHAR,OCHAR JYES=maCK IT

JSR R7,PARGEN

IE 1CHAR, OCHAR)

KEO PAROK 10K?

BIS #PARERR, ®MONADR INN==-=SET ERR BIT
PAROKX: OLK CCHAR

EIC #17720608,1CHAR JISTRIP PARITY

aMPR ¢14(RADD)#KRD 118 THIS KBD INPUT

RNE GK? INO

18TA FRKOCNT }YESe=nDONE EKO OF LAST?

REA $ 0K IYES

GLR 1CHAR INO===DROP NEW CHAR
§JP2CKY UMP CKOUN

tWHAT 1S THE CHAR
$0K 3 OMPR 1CHAR, #CTRLC 11S IT A ¢C

RNE oK IND

MOV #UPC.1QCHAR IYES==ECHO ¢C

INC RDUN

KoV #AGRTAD,22(R6) $DIDOLE RETURN ADR

KR PLUSL

ITHIS 1S NOT KBD INPUT

JIFORMATTED AND UNFORMATTED
1ASCI] ARE HANDLED THE SAME
CMPR ICHAR, #RUBOUT 11S THIS A RUBOUT

REG X
RR PUT

IYES===IGNORE 1T
INO===

4-20

CKTAS

CKCR?

SCKALT1

SAI TS
CKI F

CKFF?

My S
RNC
MmOy
“ov
<R

cMPR
RNE
MOV
TNC
RR

cMeR
RE S
nMPR
RFO
cMPy
ANE
MOY
OMPR
RN

TN

RR

MoV
LMeR
RNE
MQV
MOV
RR

ToiiAR, #HTAL
LAOR
LOLNKS,0CHAR
TASCHNTE<QCHT
PUT

1Ci-AR+¥#CFR
$CK3
#CRLF,OCHAR
FOUN

FLUS

J1CHAR,#@33

$ALT
1CHAR,#175
LALT
TCHAR,#176
CKEX

#175, ICHAR
1CHAR, #LF
CKFF

POUN

PUT

ICHAR,OCHAK
ICHAR #FF
PUT
#U4)EKOCNT
#LFLFCCHAR
FUT

115 1T A TAB

IND

JYES===ECHO BLANKS
ISET UP COUNTER

}

118 IT A CR?

IND
JIYES==mECHO CRLF

)
11S CHAR AN ALTMODE?

4-21

4.5 SOFTWARE ERROR HALTS

ED-11 loads all unused trap vectors with the code
.WORD .+2,HALT

so that if the trap does occur, the processor will halt in the second word
of the vector. The address of the halt, displayed in the console address
register, therefore indicates the cause of the halt. In addition to the
halts which may occur in the vectors, the standard IOX error halt at loca-
tion 40 may occur (see Chapter 7).

Address of HALT Meaning
12 Reserved instruction executed
16 - Trace trap occurred
26 ‘ Power fail trap
32 : EMT executed
36 ‘ TRAP executed
40 IOX detected error

4-22

.

CHAPTER 5
DEBUGGING OBJECT PROGRAMS ON-ILINE

Sl INTRODUCTION 5=
B Ll ODT-11 and ODT-11X 5-1
il ODT's Command Syntax 570)
B2 COMMANDS AND FUNCTIONS 5-4
Gyl Opening, Changing, and Closing Locations 5-4
Br 2! The Slash, / 5-4
BlZailia 2 The LINE FEED Key, ¢ 5-5
D28 The Up-Arrow, + 5-6
BteiZzatilized The Back-Arrow, < 5-6
5215 Accessing General Registers 0-7 5-7
D 26 Accessing Internal Registers Ber
Sk 2559 Breakpoints 5-8
L it S S Setting the Breakpoint, n;B 5-8
52042129 Locating the Breakpoint, $B 5-9
5.2.3 Running the Program, n;G and n;P 5-10
545244 Searches 5=11
ST Word Search, n;W 5-12
524452 Effective Address Search, n;E 5-=12
5R255 Calculating Offsets, n;O =13
5is 2010 ODT's Priority Level, SP 5-14
B3 ODT=-11X 5-14
B3l Opening, Changing, and Closing Locations 5-14
bl Opening the Addressed Location, @ 5=1'5
B Sl 2 Relative Branch Offset, > 5-15
Bis S ilias Return to Previous Sequence, < 5-15
Bl Calculating Offsets, n;O 5=16
5e:31.:3 Breakpoints 5=16
5¢3.4 Single-Instruction Mode B =117
5.4 ERROR DETECTION 5=18
5.5 PROGRAMMING CONSIDERATIONS 5=19
Sebie ! Functional Organization 5-20
5152 Breakpoints 5-=20
Sigiole S Search B5=25
5isiBicd Teletype Interrupt 5=126
56 OPERATING PROCEDURES 5=277
556l Loading Procedures 5=27,
58642 Start and Restart 527
566 Assembling ODT 5528

N
{

CHAPTER 5

DEBUGGING OBJECT PROGRAMS ON-LINE

5.1 INTRODUCTION
ODT-11 (On-line Debugging Technique for the PDP-11) is a system program

which aids in debugging assembled object programs. From the Teletype
keyboard you interact with ODT and the object program to:

[print the contents of any location for examination or
alteration,

° run all or any portion of your object program using the
breakpoint feature,

search the object program for specific bit patterns,

search the object program for words which reference a specific
word,

° calculate offsets for relative addresses.

During a debugging session you should have at the teleprinter the
assembly listing of the program to be debugged. Minor corrections to the
program may be made on-line during the debugging session. The program may

then be run under control of ODT to verify any change made. Major correc-

tions, however, such as a missing subroutine, should be noted on the

assembly listing and incorporated in a subsequent updated program assembly.

A binary tape of the debugged program can be obtained by use of the
DUMPAB program (see Chapter 6, Section 6.3).

5.1.1 O0ODT-11 and ODT-11X
There are two versions of ODT included in the PDP-11 Paper Tape Software

System: a standard version, ODT-11l, and an extended version, ODT-11X.
Both versions are independent, self-contained programs. ODT-11X has all
the features of ODT-11l, plus some additional features. Each version is
supplied on two separate paper tapes: a source tape and an absolute
binary tape. The purpose of the tapes, and loading and starting procedures

are explained in a later section of this chapter.

ODT-11 is completely described in Section 5.2, and the additional
features of ODT-11X are covered in Section 5.3. 1In all sections of this
chapter, except where specifically stated, reference to ODT applies to

both versions. Concluding sections are concerned with ODT's internal

5-1

operations =-- how breakpoints are effected, how it uses the "trace trap"

and the T-bit, and other useful data. Such information is not necessary (;‘
to efficiently use ODT, but is available for anyone desiring such in- \
depth information.

The following discussion assumes that the reader is familiar with
the PDP-11 instruction formats and the PAL-11lA Assembly Language as =
described in Chapter 3.

5.1.2 ODT's Command Syntax _
ODT's commands are composed using the following characters and symbols.

They are often used in combination with the address upon which the opera-
tion is to occur, and are offered here for familiarization prior to (‘~
their thorough coverage which follows. Unless indicated otherwise,

n below represents an octal address.

n/ open the word at location n

/ reopen last opened location

n\ (SHIFT/L) open the byte at location n (ODT-11X only) (‘ |
reopen the last opened byte (ODT-11X only) \

v (LINE FEED key) open next sequential location

‘; open previous location

RETURN close open location and accept the next command

+2 take contents of opened'location, index by contents of (
PC, and open that location

@ take contents of opened location as absolute address and
open that location (ODT-11X only)

> take contents of opened location as relative branch
instruction and open referenced location (ODT-11X only) .

< return to sequence prior to last @, >, or <« command

and open succeeding location (ODT-11X only)

$n/ open general register n (0-7)

IThe circumflex, ", appears on some keyboards and printers in place
of the up-arrow.

2 . _ .
The underline, _, appears on some keyboards and printers in ol |
of the back-arrow. ¥ P place ([

n/(word) m;0

($B/

sM/
$S/
$p/

separates commands from command arguments (used with
alphabetic commands below)

remove Breakpoint(s) (see description of each ODT
version for particulars)

set Breakpoint at location n
set Breakpoint r at location n (ODT-11X only)
remove rth Breakpoint (ODT-11X only)

search for instructions that reference Effective
address n

search for Words with bit patterns which match n

enable Single-instruction mode (n can have any value
and is not significant); disable breakpoints

~disable Single-instruction mode

Go to location n and start program run

Proceed with program execution from breakpoint; stop
when next breakpoint is encountered or at end of
program

In Single-instruction mode only (ODT-11X), Proceed to
execute next instruction only

Proceed with program execution from breakpoint;
stop after encountering the breakpoint n times.

In Single-instruction mode only (ODT-11X), Proceed to
execute next n instructions.

calculate Offset from location n to location m

ODT-11, open Breakpoint status word
ODT-11X, open Breakpoint 0 status word

open search Mask
open location containing user program's Status register

open location containing ODT's Priority level

With ODT-11, location references must be to even numbered 16-bit words.

With ODT-11X, location references may be to 16-bit words or 8 bit

bytes.

The semicolon in the above commands is ignored by ODT-11, but is

require it.

(, used for the sake of consistency, since similar commands to ODT-11X

5.2 COMMANDS AND FUNCTIONS (;_\

When ODT is started as explained in Section 5.6, it will indicate its
readiness to accept commands by printing an asterisk on the left margin
of the teleprinter paper. In response to the asterisk, you can issue
most commands; for example, you can examine and, if desired, change a
word, run the object program in its entirety or in segments, or even
search core for certain words or references to certain words. The dis-
cussion below will first explain some elementary features before covering

the more sophisticated features.

All commands to ODT are stated using the characters and symbols

shown above in Section 5.1.2. (

5.2.1 Opening, Changing, and Closing Locations

An open location is one whose contents ODT has printed for examination,
and whose contents are available for change. A closed location is one
whose contents are no longer available for change. Any even-numbered

location may be opened using ODT-11. (

The contents of an open location may be changed by typing the new
contents followed by a single character command which requires no argu-
ment (i.e., ¥, 4 RETURN, <, @, >, <). Any command typed to open a loca-
tion when another location is already open, will first cause the

currently open location to be closed.

5.2.1.1 The Slash, /

One way to open a location is to type its address followed by a slash:
*1000/012746 .

Location 1000 is open for examination and is available for change. Note

that in all examples ODT's printout is underlined; your typed input is

not.

Should you not wish to change the contents of an open location,

TN

merely type the RETURN key and the location will be closed; ODT will
print another asterisk and wait for another command, However, should
you wish to change the word, simply type the new contents before

giving a command to close the location.

;1000/012746 012345

In the example above, location 1000 now contains 012345 and is closed
since the RETURN key was typed after entering the new contents, as

indicated by ODT's second asterisk.
Used alone, the slash will reopen the last location opened:

*1000/012345 2340
¥/002340

As shown. in thevexample aBove, an open location can be closed by typing
the RETURN key. In this case, ODT changed the contents of location 1000
to 002340 and then closed the location before printing the *. We then .
typed a single slash which directed ODT to reopen the last location
opened. This allowed us to verify that the word 002340 was correctly
stored in location 1000. (ODT supplies the leading zeroes if not
given.)

Note again that opening a location while another is currently open
will automatically close the currently open location before opening the

new location.

5.2.1.2 The LINE FEED Key

If the LINE FEED key is typed when a location is open, ODT closes the

open location and opens the next sequential location:

*1000/002340 ¥ (¥ denotes typing the LINE FEED key)
001002/012740

In this example, the LINE FEED key instructed ODT to print the address
of the next location along with its contents and to wait for further

instructions. After the above operation, location 1000 is closed and

5-5

1002 is open. The open location may be modified by typing the new

contents.

5.2.1.3 The Up-Arrow, +

The up-arrow (or circumflex) symbol is effected by typing the SHIFT
and N key combination. If the up-arrow is typed when a location is
open, ODT closes the open location and opens the previous location

(as shown by continuing from the example above):

001002/012740 4+ (+is printed by typing SHIFT and N)
001000,/002340

Now location 1002 is closed and 1000 is open. The open location may

be modified by typing the new contents.

5.2.1.4 The Back-Arrow, =<

The back-arrow (or underline) symbol is effected by typing the SHIFT
and O key combination. If the back-arrow is typed to an open location,
ODT interprets the contents of the currently open location as an
address indexed by the Program Counter (PC) and opens the location so

addressed:

*1006,/000006 <« (« is printed by typing SHIFT and O)
0010167100405

Notice in this example that the open location, 1006, was indexed by
the PC as if it were the operand of an instruction with address mode

67 as explained in Chapter 3.

A modification to the opened location can be made before a V, *,
or <« 1is typed. Also, the new contents of the location will be used
for address calculations using the « command. Example:

*100/000222 4+ (modify to 4 and open next location)
000102/000111 6 4 (modify to 6 and open previous location)
000100/000004 100+« (change to 100 and open location indexed
000202/ (contents) by PC)

N

TN

5.2.1.5 Accessing General Registers 0-7

The program's general registers 0-7 can be opened using the following

command format:

*$n/

where n is the integer representing the desired register (in the range
0 through 7). When opened, these registers can be examined or changed
by typing in new data as with any addressable location. For example:

*$0,/000033 (RO was examined and closed)
*
and
*$4/000474 464 (R4 was opened, changed, and closed)
*

The example above can be verified by typing a slash in response to
ODT's asterisk:

%/000464

The +, 4 «, or @ commands may be used when a register is open (the
@ is an ODT-11X command) .

5.2.1.6 Accessing Internal Registers

The program's Status Register contains the condition codes of the most
recent operational results and the interrupt priority level of the
object program. It is opened using the following command:

*$5,/000311

where $S represents the address of the Status Register. In response
to $§S/ in the example above, ODT printed the 16-bit word of which only

the low-order 8 bits are meaningful: Bits 0-3 indicate whether a carry,

overflow, zero, or negative (in that order) has resulted, and bits 5-7

5-17

indicate the interrupt priority level (in the range 0-7) of the object
program. (See Chapter 1 of this manual or the PDP-1l1 Handbook

for the Status Register format.)

The $ is used to open certain other internal locations:

$B internal breakpoint status word (see Section 5.2.2.2)

SM mask location for specifying which bits are to be
examined during a bit pattern search (see Section
5.2.4)

SP location defining the operating priority of ODT

(see Section 5.2.6)

$S location containing the condition codes (bits 0-3)
and interrupt priority level (bits 5-7)

5.2.2 Breakpoints

The breakpoint feature facilitates monitoring the progress of program
execution. A breakpoint may be set at any instruction which is not
referenced by the program for data. When a breakpoint is set, ODT
replaces the contents of the breakpoint location with a trap instruc-
tion so that when the program is executed and the breakpoint is
encountered, program execution is suspended, the original contents

of the breakpoint location are restored, and ODT regains control.

5.2.2.1 Setting the Breakpoint, n;B

ODT-11 provides only one breakpoint (ODT-11X provides eight break-
points). However, the breakpdint may be changed at any time. The
breakpoint is set by typing the addfess of the desired location of
the breakpoint followed by ;B. For example:

*1020;B
*

sets the breakpoint at location 1020. The breakpoint above is

changed to location 1120 as shown below.

*1020;B
¥1120;B
*

//A ™,

PR

Breakpoints should not be set at locations which are referenced
by the program for data, or on an IOT, EMT, or TRAP instruction. This

restriction is explained in Section 5.5.2.

The breakpoint is removed by typing ;B without an argument, as
shown below.

*1120;B (sets breakpoint at location 1120)
*;B (removes breakpoint)
*

5.2.2.2 Locating the Breakpoint, $B

The command $B/ causes the ODT-1l version to print the address of
the breakpoint (see also Section 5.3.3 on $B in ODT-11X):

*$B/001120

The breakpoint was set at location 1120. $B represents the address
containing ODT-1l's breakpoint location. Typing the RETURN key in
the example above will leave the breakpoint at location 1120 and
return control to ODT-11, or the breakpoint could be changed to a
different location:

*$B/001120 1114
*$B/001114 |
*

The breakpoint was found in location 1120, changed to location 1114,

and the change was verified.

If no breakpoint was set, $B contains an address internal to

5.2.3 Running the Program, n;G and n;P

Program execution is under control of ODT. There are two commands for
running the program: n;G and n;P. The n;G command is used to start
execution (Go) and n;P to continue (Proceed) execution after having
halted at a breakpoint. For example:

*1000;G

starts execution at location 1000. The program will run until encounter-
ing a breakpoint or until program completion, unless it gets caught in
an infinite loop, where you must either restart or reenter as explained

in Section 5.6.2.

When a breakpoint is encountered, execution stops and ODT-1ll prints
B; followed by the address of the breakpoint. You may then examine
desired locations for expected data. For example:

*1010;B (breakpoint is set at location 1010)
*1000;G (execution started at location 1000)
B;001010 (execution stopped at location 1010)
eAAL LS

To continue program execution from the breakpoint, type ;P in
response to ODT-1ll's last *.

When a breakpoint is set in a loop, it may be desirable to allow
the program to execute a certain number of times through the loop before
recognizing the breakpoint. This may be done by typing the n;P command
and specifying the number of times the breakpoint is to be encountered
before program execution is suspended (on the nth encounter). (See
Section 5.3.3 for ODT-11X interpretation of this command when more

than one breakpoint is set in a loop.)

Example:
B;001010 (execution halted at breakpoint)
*1250;8B (set breakpoint at location 1250)
*4;pP (continue execution, loop through
B;001250 : breakpoint 3 times and halt on the
2

4th occurrence of the breakpoint)

5-10

; e N

/\\‘

The breakpoint repeat count can be inspected by typing $B/ and
following that with the typing of LINE FEED. The repeat count will
then be printed. This also provides an alternative way of specifying
the count. The location, being open, can have its contents modified
in the usual manner by the typing of new contents and then the RETURN
key.

Example:

*$B/001114 ¥ (address of breakpoint is 1114)
nnnnnn/000003 6 (repeat count was 3, changed to 6)
£ o

Breakpoints are inserted when performing an n;G or n;P command.
Upon execution of the n;G or n;P command, the general registers 0-6
are set to the values in the locations specified as $0-$6 and the
processor status register is set to the value in the location specified
as §$S.

5.2.4 Searches

With ODT you can search all or any specified portion of core memory

for any specific bit pattern or for references to a specific location.

The location represented by $M is used to specify the mask of
the search. The next two sequential locations contain the lower and
upper limits of the search. Bits set to 1 in the mask will be

examined during the search; other bits will be ignored. For example,

*$M/000000 177400 + (¥ denotes typing LINE FEED)
nnnnnn/000000 1000 + (starting address of search)
nnnnnn/000000 1040 (last address in search)

* .

where nnnnnn represents some location in ODT. This location varies
and is meaningful only for reference pﬁrposes. Note that in the first
line above, the slash was used to open $M which now contains 177400,
and that the LINE FEEDs opened the next two sequential locations which

now contain the lower and upper limits of the search.

5-11

5.2.4.1 Word Search n;w

Before initiating a word search, the mask and search limits must be
specified as explained above. Then the search object and the initiat-
ing command are given using the n;W command where n is the search
object. When a match is found, the address of the unmasked matching

word is printed. For example:

*$M/000000 177400 ¥ (test high order eight bits)
nnnnnn/000000 1000 ¥ -
nnnnnn/000000 1040

*400;wW (initiating word search)
001010,/000770

001034/000404

%

In the search process, the word currently being examined and
the search object are exclusive ORed (XORed), and the result is
ANDed to the mask. If this result is zero, a match has been found,
and is reported on the teleprinter. Note that if the mask is zero,

all locations within the limits will be printed.

5.2.4.2 Effective Address Search, n:E

ODT enables you to search for words which address a specified loca-
tion. After specifying the search limits (Section 5.2.4), the command

n;E is typed (where n is the effective address), initiating the search.

Words which are either an absolute address (argument n itself), a
relative address offset, or a relative branch to the effective address

will be printed after their addresses. For example:

:$M/l77400 ¥
nnnnnn/001000 1010 ¢
nnnnnn/001040 1060

*1034;E (initiating search)
001016/001006 (relative branch)
001054/002767 (relative branch)

*1020;E (initiating a new search)
001022/177774 (relative address offset)
001030,/001020 (absolute address)

*

Particular attention should be given to the reported references
to the effective address because a word may have the specified bit
pattern of an effective address without actually being so used. ODT

will report these as well.

5.2.5 Calculating Offsets, n;0O

Relative addressing and branching involve the use of an offset - the
number of words or bytes forward or backward from the current location
to the effective address. During the debugging session it may be
necessary to change a relative address or branch reference by replac-
ing one instruction offset with another. ODT calculates the offsets

for you in response to its n;0 command.

The command n;0 causes ODT to print the 16-bit and 8-bit offsets
from the currently open location to address n. In ODT-11, the 8-bit
offset is printed as a 16-bit word. For example:

*346/000034 414;0 000044 000022 22
¥/000022
¥20/000046 200;0 000156 000067 67
¥20/000067

In the first example, location 346 is opened and the offsets from

that location to location 414 are calculated and printed. The contents
of location 346 are then changed to 22 and verified on the next line.
The 16-bit offset is printed followed by the 8-bit offset. 1In the
example above, 000156 is the 16-bit offset and 000067 is the 8-bit
offset.

The 8-bit offset is printed only if the 16-bit offset is even, as
was the case above. With ODT-1l1l only, the user must determine whether
the 8-bit offset is out of the range of 177600 to 000177 (—128lO to
12710). The offset of a relative branch is calculated and modified

as follows:

;l034/10342l 1034;0 177776 177777 103777

Note that the modified low-order byte 377 must be combined with the

5-13

unmodified high-order byte. Location 1034 was still open after the
calculation, thus typing 103777 changed its contents; the location

was then closed.

5.2.6 ODT's Priority Level, $P

$P represents a location in ODT that contains the priority level at
which ODT operates. If $P contains the value 377, ODT will operate
at the priority level of the processor at the time ODT is entered.
Otherwise $P may contain a value between 0 and 7 corresponding to the
fixed priority at which ODT will operate.

To set ODT to the desired priority level, open $P. ODT will
print the present contents, which may then be changed:

*$P/000006 377
*

If $P is not specified, its value will be seven.

Breakpoints may be set in routines at different priority levels.
For example, a program running at a low priority level may use a
device service routine which operates at a higher priority level. If
a breakpoint occurs from a low priority routine, if ODT operates at
a low priority, and if an interrupt does occur from a high priority
routine, then the breakpoints in the high priority routine will not

be executed since they have been removed.

5.3 0DT-11X

ODT-11X has all the commands and features of ODT-11 as explained in
Section 5.2, plus the following.

5.3.1 Opening, Changing and Closing Locations

In addition to operating on words, ODT-11X operates on bytes.

One way to open a byte is to type the address of the byte
followed by a backslash:

*1001\ 025 (\ is printed by typing SHIFT and L)
| 5-14

TN

A backslash typed alone will reopen the last open byte. If a word
was previously open, the backslash will reopen its even byte.

*1002/000004\004

The LINE FEED and up-arrow (or circumflex) keys will operate on bytes

if a byte is open when the command is given. For example:

*1001\025 +
001002004 +
b“—_l—omouozs

*

5.3.1.1 Open the Addressed Location, @

The symbol @ will optionally modify, close an open word, and use its
contents as the address of the location to open next.

*1006,/001024 @ (open location 1024 next)
001024/000500

*¥1006,/001024 2100 @ (modify to 2100 and open
002100/177774 location 2100)

5.3.1.2 Relative Branch Offset, >

The right angle bracket, >, will optionally modify, close an open
word, and use its even byte as a relative branch offset to the next

word opened.

*1032/000407 301 > (modify to 301 and interpret as
000636/000010 a relative branch) -
Note that 301 is a negative offset (-77). The offset ié doubled be-

fore it is added to the PC; therefore, 1034 + -176 = 636.

5.3.1.3 Return to Previous Sequence, <

The left angle bracket, <, will optionally modify, close an open
location, and open the next location of the previous sequence
interrupted by a <+, @, or > command. Note that «, @, or > will
cause a sequence change to the word opened. If a sequence change
has not occurred, < will simply open the next location as a LINE

FEED does. The command will operate on both words and bytes.
5-15

*1032/000407 301 > (> causes a sequence change)

000636/000010 < (< causes a return to original
' sequence)

001034/001040 @ (@ causes a sequence change)

001040,/000405\ 005 < (< now operates on byte)

001035\ 002 _ (< acts like +)

001036\ 004

5.3.2 Calculating Offsets, n;O

The command n;O causes ODT to print the 16-bit and 8-bit offsets from
the currently open location to address n. The following examples,
repeated from the ODT-11 section describing this command (see Section

5.2.5), show only a difference in printout format:

*346/000034 414;0 000044 022 22
*/000022

*1034/103421 1034;0 177776 377\ 021 377
%/103777 - -

Note that the modified low-order byte 377 must be combined with the
unmodified high-order byte.

5.3.3 Breakpoints

With ODT-11X you can, at any one time, have up to eight breakpoints set,
numbered 0 through 7. The n;B command used in ODT-11 to set the break-
point at address n will set the next available breakpoint in ODT-11X.

Specific breakpoints may be set or changed by the n;mB command where m

is the number of the breakpoint. For example:

*1020;B - (sets breakpoint 0)
*1030;B (sets breakpoint 1)
¥1040;B (sets breakpoint 2)
*¥1032;1B (resets breakpoint 1)
*

The ;B command used in ODT-11 to remove the only breakpoint will remove
all breakpoints in ODT-11X. To remove only one of the breakpoints, the

;nB command is used, where n is the number of the breakpoint. For example:

ul
I

16

N

N
w

(removes the second breakpoint)

| * *

The $B/ command will open the location containing the address of
breakpoint 0. The next seven locations contain the addresses of the
other breakpoints in order, and thus can be opened using the LINE FEED
key. (The next location is for Single-instruction mode, explained in

the next section.) Example:

*$B/001020 +
nnnnnn/001032 ¥
nnnnnn/ (address internal to ODT)

In this example, breakpoint 2 is not set. The contents will be an
address internal to ODT. After the table of breakpoints is the table
of Proceed command repeat counts for each breakpoint, and for the Single-

instruction mode (see Section 5.3.4).

. ¥

nnnnnn/001036 ¢ (address of breakpoint 7)
nnnnnn/nnnnnn = ¥ (single-instruction address)
nnnnnn/000000 15 ¥ (count for breakpoint 0)
nnnnnn/000000 (count for breakpoint 1)

- It should be noted that a repeat count in a Proceed command refers
only to the breakpoint that has most recently occurred. Execution of

other breakpoints encountered is determined by their own repeat counts.

5.3.4 Single-Instruction Mode

With this mode you can specify the number of instructions you wish
executed before suspension of the program run. The Proceed command,
instead of specifying a repeat count for a breakpoint encounter, specifies
the number of succeeding instructions to be executed. Note that break-

points are disabled when single-instruction mode is operative.

Commands for single-instruction mode follow:

ins Enables Single-instruction mode (n can have any
value and serves only to distinguish this form
from the form ;S); breakpoints are disabled.

n;P Proceeds with program run for next n instructions
before reentering ODT (if n is missing, it is
assumed to be 1l). (Trap instructions and
associated handlers can affect the Proceed repeat
count. See Section 5.5.2.)

;S Disables Single-instruction mode

When the repeat count for Single-instruction mode is exhausted
and the program suspends execution, ODT prints:

B8;n

X

where n is the address of the next instruction to be executed. The
$§B breakpoint table contains this address following that of break-
point 7. However, unlike the table entries for breakpoints 0-7, the
B8 entry is not affected by direct modification.

Similarly, following the repeat count for breakpoint 7, is the
repeat count for Single-instruction mode. This table entry, however,
may be directly modified, and thus is an alternative way of setting
the Single-instruction mode repeat count. 1In such a case, ;P implies

the argument set in the $B repeat count table rather than the argument 1.

5.4 ERROR DETECTION

ODT-11 and ODT-11X inform you of two types of errors: illegal or
unrecognizable command and bad breakpoint entry.

Neither ODT-11 nor ODT-11X checks for the legality of an address

when commanded to open a location for examination or modification.
Thus, the command

177774/

5-18

AN

will reference nonexistent memory, thereby causing a trap through the
vector at location 4. If this vector has not been properly initialized
(by IOX, or the user program if IOX is not used), unpredictable results

will occur.
Similarly, a command such as
$20/

which references an address eight times the value represented by $2,

may cause an illegal (nonexistent) memory reference.

Typing something other than a legal command will cause ODT to

ignore the command, print

| *+

and wait for another command. Therefore, to cause ODT to ignore a
command just typed, type any illegal character (such as 9 or RUBOUT)

and the command will be treated as an error, i.e., ignored.

ODT suspends program execution whenever it encounters a breakpoint,
i.e., a trap to its breakpoint routine. If the breakpoint routine is
entered and no known breakpoint caused the entry, ODT prints:

BE001542
*

and waits for another command. In the example above, BE001542 denotes
Bad Entry from location 001542. A bad entry may be caused by an
illegal trace trap instruction, setting the T-bit in the status
register, or by a jump to the middle of ODT.

5.5 PROGRAMMING CONSIDERATIONS

Information in this section is not necessary for the efficient use of

ODT.

However, its content does provide a better understanding of

how ODT performs some of its functions.

5.5.1 Functional Organization

The internal organization of ODT is almost totally modularized into

independent subroutines. The internal structure consists of three

major functions: command decoding, command execution, and various

utility routines.

for command errors, saves input parameters for use in command execution,

The command decoder interprets the individual commands, checks

and sends control to the appropriate command execution routine.

The command execution routines take parameters saved by the

command decoder and use the utility routines to execute the specified

command. Command execution routines exit either to the object program

or back to the command decoder.

The utility routines are common routines such as SAVE-RESTORE

and I/0. They are used by both the command decoder and the command

executers.

Communication and data flow are illustrated in Figure 5-1.

5.5.2 Breakpoints

The function of a breakpoint is to give control to ODT whenever the

user program tries to execute the instruction at the selected address.

Upon encountering a breakpoint, the user can utilize all of the ODT

commands to examine and modify his program.

When a breakpoint is executed, ODT-11(X) removes (all) the break-

point instruction(s) from the user's code so that the locations may
be examined and/or altered. ODT then types a message to the user of
the form Bn(Bm;n for ODT-11X) where n is the breakpoint address

(and m is the breakpoint number). The breakpoints are automatically

restored when execution is resumed.

A major restriction in the use of breakpoints is that the word

5-20

MANUAL
ENTRY

- BREAKPOINT - COMMAND
HANDLER DECODER
l R
Y |
PROGRAM INTERNAL
B PROGRAM EXAMINATION & TABLE MANA-
- Agyoﬁnos MODIFICATION PULATION
comm COMMANDS COMMANDS
USER ,
n A
B e T p—— - |
A Y
ooT
-———— INTERNAL
I TABLES
PROGRAM *
|
1
UTILITY
e B - epep—— -- ROUTINES
(1/0,ETC.)
USER ENVIRONMENT oDT
LEGEND
Flow of control
Flow of data - -
Figure 5-1 Communication and Data Flow

5-21

where a breakpoint has been set must not be referenced by the program ~—
in any way since ODT has altered the word. Also, no breakpoint should (
be set at the location of any instruction that clears the T-bit. For
example:

MOV #240,177776 ;SET PRIORITY TO LEVEL 5.

A breakpoint occurs when a trace trap instruction (placed in the user
program by ODT) is executed. When a breakpoint occurs, the following
steps are taken:

1. Set processor priority to seven (automatically set by »
trap instruction). (

2. Save registers and set up stack.
. If internal T-bit trap flag is set, go to step 13.
. Remove breakpoint(s).

5. Reset processor priority to ODT's priority or user's
priority.

6. Make sure a breakpoint or Single-instruction mode caused p
the interrupt. (>

7. If the breakpoint did not cause the interrupt, go to
step 15.

8. Decrement repeat count.
Y. Go to step 18 if non-zero, otherwise reset count to one.
10. Save Teletype status.

11. Type message to user about the breakpoint or Single- .
instruction mode interrupt. (

12. Go to command decoder.

13. Clear T-bit‘in stack and internal T-bit flag.

14. Jump to the "GO" processor.

15. Save Teletype status.

16. Type "BE" (Bad Entry) followed by the address. \

17. Clear the T-bit, if set, in the user status and proceed
to the command decoder.

18. Go to the "Proceed" processor, bypassing the TTY restore
routine.

Note that steps 1-5 inclusive take approximately 100 microseconds ’
during which time interrupts are not permitted to occur (ODT is running (i
at level 7).

When a proceed (;P) command is given, the following occurs:

1. The proceed is checked for legality.
2. The processor priority is set to seven.
3. The T-bit flags (internal and user status) are set.

4. The user registers, status, and Program Counter are
restored.

5. Control is returned to the user.

6. When the T-bit trap occurs, steps 1, 2, 3, 13, and 14
of the breakpoint sequence are executed, breakpoints
are restored, and program execution resumes normally.

When a breakpoint is placed on an IOT, EMT, TRAP, or any instruc-

tion causing a trap, the following occurs:

1. When the breakpoint occurs as described above, ODT
is entered.

2. When ;P is typed, the T-bit is set and the IOT, EMT, TRAP,
or other trapping instruction is executed.

3. This causes the current PC and status (with the T-bit
included) to be pushed on the stack.

4., The new PC and status (no T-bit set) are obtained from
the respective trap vector.

5. The whole trap service routine is executed without any
breakpoints.

6. When an RTI is executed, the saved PC and PS (including
the T-bit) are restored. The instruction following the
trap~causing instruction is executed. If this instruc-
tion is not another trap-causing instruction, the T-bit
trap occurs, causing the breakpoints to be reinserted in
the user program, or the Single-instruction mode repeat
count to be decremented. If the following instruction is
a trap-causing instruction, this sequence is repeated,
starting at step 3.

NOTE

Exit from the trap handler must be via the RTI in-
struction. Otherwise, the T-bit will be lost. ODT
will not gain control again since the breakpoints
have not been reinserted yet.

In ODT-11, the ;P command is illegal if a breakpoint has not
occurred (ODT will respond with ?). In ODT-11X, ;P is legal after
any trace trap entry.

WARNING

Since ODT-11 ignores all semicolons, typing the
ODT-11X form of breakpoint command number to
ODT-11, specifying a breakpoint number n, causes
the following error:

100;B (sets the breakpoint at location 100)
100;0B (sets the breakpoint at location 1000)
100;4B (sets the breakpoint at location 1004)

The internal breakpoint status words for ODT-11 have the following

format:

1. The first word contains the breakpoint address. If
this location points to a location within ODT, it is
assumed no breakpoint is set for the cell(specifically,
ODT has set a dummy breakpoint within itself).

2. The next word contains the breakpoint repeat count.
For ODT-11X (with eight breakpoints) the formats are:

1. The first eight words contain the breakpoint addresses
for breakpoints 0-7. (The ninth word contains the
address of the next instruction to be executed in
Single-instruction mode.)

2. The next eight words contain the respective repeat
counts. (The following word contains the repeat count
for Single-instruction mode.)

These words may be changed at will by the user, either by using the

breakpoint commands or by direct manipulation with $B.

When program runaway occurs (that is, when the program is no
longer under ODT control, perhaps executing an unexpected part of
the program where a breakpoint has not been placed) ODT may be
given control by pressing the HALT key to stop the machine, and
restarting ODT (see Section 5.6.2). ODT will print *, indicating

that it is ready to accept a command.

If the program being debugged uses the Teletype for input or
output, the program may interact with ODT to cause an error since
ODT uses the Teletype as well. This interactive error will not

occur when the program being debugged is run without ODT.

5.5.3

If the Teletype printer interrupt is enabled upon entry
to the ODT break routine, and no output interrupt is

pending when ODT is entered, ODT will generate an unex-
pected interrupt when returning control to the program.

If the interrupt of the Teletype reader (the keyboard)
is enabled upon entry to the ODT break routine, and the
program is expecting to receive an interrupt to input a
character, both the expected interrupt and the character
will be lost.

If the Teletype reader (keyboard) has just read a char-
acter into the reader data buffer when the ODT break
routine is entered, the expected character in the
reader data buffer will be lost.

Search

The word search allows the user to search for bit patterns in specified

sections of memory. Using the $M/ command, the user specifies a mask,

a lower search limit ($M+2), and an upper search limit ($M+4). The

search object is specified in the search command itself.

The word search compares selected bits (where ones appear in the

mask) in the word and search object. If all of the selected bits are

equal, the unmasked word is printed.

The search algorithm is:

Fetch a word at the current address.
XOR (exclusive OR) the word and search object.
AND the result of step 2 with the mask.

If the result of step 3 is zero, type the address of
the unmasked word and its contents. Otherwise, proceed
to step 5.

Add two to the current address. If the current address
is greater than the upper limit, type * and return to the
command decoder, otherwise go to step 1.

Note that if the mask is zero, ODT will print every word between

the limits, since a match occurs every time (i.e., the result of step

3 is always zero).

In the effective address search, ODT interprets every word in the

5-25

search range as an instruction which is interrogated for a possible
direct relationship to the search object.

The algorithm for the effective address search is (where (X)
denotes contents of X, and K denotes the search object):

l. Fetch a word at the current address X.

2. If (X)=K [direct reference], print contents and go to
step 5.

3. If (X)+X+2=K [indexed by PC], print contents and go to
step 5.

4, If (X) is a relative branch to K, print contents.

5. Add two to the current address. If the current
address is greater than the upper limit, perform a
carriage return/line feed and return to the command
decoder; otherwise, go to step 1.

5.5.4 Teletype Interrupt

Upon entering the TTY SAVE routine, the following occurs:

1. Save the LSR status register (TKS).
2. Clear interrupt enable and maintenance bits in the TKS.
3. Save the TTY status register (TPS).

4. Clear interrupt enable and maintenance bits in the TPS.
To restore the TTY:

1. Wait for completion of any I/O from ODT.
2. Restore the TKS.
3. Restore the TPS.

WARNINGS

If the TTY printer interrupt is enabled upon entry to
the ODT break routine, the following may occur:

1. If no output interrupt is pending when ODT is
entered, an additional interrupt will always
occur when ODT returns control to the user.

2. If an output interrupt is pending upon entry,
the expected interrupt will occur when the user
regains control.

5-26

A[\

e ™.,

WARNINGS (cont.)

If the TTY reader (keyboard) is busy or done, the expected
character in the reader data buffer will be lost.

If the TTY reader (keyboard) interrupt is enabled upon
entry to the ODT break routine, and a character is pend-
ing, the interrupt (as well as the character) will be
lost.

5.6 OPERATING PROCEDURES

This section describes assembling and loading procedures for ODT,
restarting and reentering procedures, error recovery, and setting

the priority level of ODT.

5.6.1 Loading Procedures

ODT-11 and ODT-11X are supplied on source and binary tapes. Source
tapes are assembled as explained in Section 5.6.3. Binary tapes of
either version are loaded into core memory using the Absolute Loader,
as explained in Section 6.2.2. When using ODT's binary tapes, the
object program should be loaded prior to loading ODT, since ODT is
started when loaded.

ODT—il is loaded into core starting at location 13026, and requires
about 533lo locations of core. ODT-11X is loaded into core starting
at location 12054, and requires about 800 words of core.

5.6.2 Starting and Restarting

After loading ODT into core, it is automatically started by the
Absolute Loader. ODT indicates its readiness to accept input by

printing an *.

When ODT is started at its start address, the SP register is
set to an ODT internal stack, registers RO-R5 are left untouched,
and the trace trap vector is initialized. 1If ODT is started after
breakpoints have been set in a program, ODT will forget about the
breakpoints and will leave the program modified, i.e., the break-

point instructions will be left in the program.

5-27

There are two ways of restarting ODT:

l. Restart at start address+2

2. Reenter at start address+4

12056 for ODT-11X), press LOAD ADDRess and then START. A restart

will save the general registers, remove all the breakpoint instruc-

i To restart, key in the start address+2 (13030 for ODT-11l or

tions from the user program and then forget all breakpoints, i.e.,

simulate the ;B command.

' ~ To reenter, key in the load address+4 (13032 for ODT-1l1l or

I 12060 for ODT-11X), press LOAD ADDRess and then START. A reenter
will save the general registers, remove the breakpoint instructions
from the user program, and ODT will type the BE (Bad Entry) error
message. ODT will remember which breakpoints were set and will

reset them on the next ;G command (;P is illegal after a Bad Entry).

5.6.3 Assembling ODT

If the program being debugged requires storage where the version of
ODT being used is normally loaded, it is necessary to reassemble ODT

after changing the starting location.

The source tape of ODT is in three segments, each separated from

the next by blank tape. The first segment contains:

.=n (standard location setting statement)
.EOT

where n=13026 for ODT-1l or n=12054 for ODT-11X. This statement
tells the Assembler to start assembling at address n. To relocate
ODT to another starting address, substitute for segment one a source

tape consisting of:

.= (n is the new load address for ODT)
.EQT

The .EOT statement tells the Assembler that this is the end of the
segment but not the end of the program -- the Assembler will stop and

wait for another tape to be placed in the reader.

The second segment of tape contains the ODT source program. This

segment is also terminated with .EOT.
The third segment of the tape consists of the statement:
.END 0.0DT

where .END means "end of program" and 0.0DT represents the starting

address of the program (see Section 6.2.3).

When relocating ODT, the first segment of the source tape must
be changed to reflect the desired load address. The third segment
may be changed to .END without a start address. The latter will cause
the Loader to halt upon completion of loading.

The segmentation allows the following assembly forms:

1. Assemble alone but at a new address. A new segment one
must be generated and assembled with segments two and three.

2. Assemble immediately after the user's program to be de-
bugged. Assemble the tape of the user's program (ending
with .EOT) followed by ODT's segment two and either segment
three or a new segment three.

3. Assemble inside the program to be debugged. Assemble the
first part of the user program (ending with .EOT) followed
by ODT's second segment followed by the second part of the
user program.

When setting locations before assembling, it must be noted that
immediately preceding ODT a minimum internal stack of 40, bytes is
required for the ODT-11 and 1168

Additional room must be allocated for subroutine calls and possible

8
bytes is required for ODT-11X.

interrupts while ODT is in control. Twelve bytes maximum will be used
by ODT proper for subroutine calls and interrupts, giving a minimum

safe stack space of'528 bytes for ODT-11l or 1308 bytes for ODT-11X.

Once a new binary tape of ODT has been assembled, load it using
the Absolute Loader as explained in Section 6.2.2. Normally, the
program to be debugged is loaded before ODT, since ODT will automatically
be in control immediately after loading, unless the third segment of
ODT's source tape was altered before assembly. As soon as the tape is
read in, ODT will print an * on the Teletype to indicate that it is
ready for a command.

/ \

w N -

CORE MEMORY DUMPS

CHAPTER 6
LOADING AND DUMPING CORE MEMORY

THE BOOTSTRAP LOADER
Loading the Loader Into Core
Loading Bootstrap Tapes
Bootstrap Loader Operation

THE ABSOLUTE LOADER
Loading the Loader Into Core
Loading Absolute Tapes
Absolute Loader Operation

1
= Hooooo SAuUtw

N O

1
=
bW

Operating Procedures
Output Formats
Storage Maps

A OO O ooy Oy
|

CHAPTER 6

Loading and Dumping Core Memory

When your PDP-11 computer is first received its core memory is completely
demagnetized -- it "knows" absolutely nothing, not even how to receive
paper tape input. However, the computer can accept data when toggled
directly into core using the console switches. Since the Bootstrap Loader
program is the very first program to be loaded, it must be toggled into

core.

The Bootstrap Loader (see Section 6.1) is a program which instructs
the computer to accept and store in core data which is punched on paper
tape in bootstrap format. The Bootstrap Loader is used to load very short
paper tape programs of 1628 1l6-bit words or less -- primarily the Absolute
Loader and Memory Dump Programs. Programs longer than 1628 16-bit words
must be assembled into absolute binary format using the PAL-11A Assembler
and loaded into core using the Absolute Loader. '

The Absolute Loader (see Section 6.2) is a system program which enables
you to load into any available core memory bank data punched on paper tape
in absolute binary format. It is used primarily to load the paper tape sys-
tem software (excluding certain subprograms) and object programs assembled
with PAL-11A.

The loader programs are loaded into the upper-most area of available
core so that they will be available for use with system and user programs.
When writing your programs be aware -that they should not use the locations
used by the loaders without restoring their contents; otherwise, the load-
ers will have to be reloaded since they would have been altered by your
object program.

Core memory dump programs {see Section 6.3) are used to print or punch
the contents of specified areas of core. For example, when developing or
debugging user programs it is often necessary to get a copy of the program
or portions of core. There are two dump programs supplied in the paper
tape software system: DUMPTT, which prints or punches the octal representa-
tion of all or specified portions of core, and DUMPAB, which punches all
or specified portions of core in absolute binary format suitable for load-

ing with the Absolute Loader..
6-1

6.1 THE BOOTSTRAP LOADER

The Bootstrap Loader should be loaded (toggled) into the highest core mem-

ory bank. The locations and corresponding instructions of the Bootstrap (\

Loader are listed and explained below.

Location

xXx7744
xx7746
xx7750
xx7752
xx7754
xx7756
xx7760
xx7762
xx7764
xx7766
xx7770
xx7772
xx7774
xx7776

Figure 6-1. Bootstrap Loader Instructions

In Figure 6-1, xx represents the highest available memory bank.

Instruction

016701
000026
012702
000352
005211
105711
100376
116162
000002
xx7400
005267
177756
000765
YYYYYY

For (

example, the first location of the Loader would be one of the following,

depending on memory size, and xx in all subsequent locations would be the

same as the first.

Location

017744
037744
057744
077744
117744
137744
157744

Note also in Figure 6-1 that the contents of location xx7766 should reflect

the appropriate memory bank in the same manner as the location.

The contents of location xx7776 (yyyyyy

Memory

Bank Memory Size

A U W N

4K
8K
12K
16K

20K

24K
28K

«

in the Instruction column of

Figure 6=1) should contain the device status register address of the paper <‘

tape reader to be used when loading the bootstrap formatted tapes. Either
paper tape reader may be used, and each is specified as follows:

Teletype Paper Tape Reader - 177560
High-Speed Paper Tape Reader - 177550

6.1.1 Loading the Loader Into Core

With the computer initialized for use as described in Chapter 2, toggle in

the Bootstrap Loader as explained below.
1. Set xx7744 in the Switch Register (SR) and press LOAD
ADDRess (xx7744 will be displayed in the ADDRESS REGISTER.

2. Set the first instruction, 016701, in the SR and 1lift
DEPosit (016701 will be displayed in the DATA register).

NOTE

When DEPositing data into consecutive words,
the DEPosit automatically increments the AD-
DRESS REGISTER to the next word.

3. Set the next instruction, 000026, in the SR and lift
DEPosit (000026 will be displayed in the DATA register),

4. Set the next instruction in the SR, press DEPosit, and
continue depositing subsequent instructions (ensure
that location xx7766 reflects the proper memory bank)
until after 000765 has been deposited in location xx7774.

5. Deposit the desired device status register address in
location xx7776, the last location of the Bootstrap
Loader.

It is good programming practice to verify that all instructions are stored
correctly. This is done by proceeding at step 6 below.

6. Set xx7744 in the SR and press LOAD ADDRess.

7. Press EXAMine (the octal instruction in location xx7744
will be displayed in the DATA register so that it can
be compared to the correct instruction, 016701. If
the instruction is correct, proceed to step 8, otherwise
go to step 10.

8. Press EXAMine (the instruction of the location displayed
in the ADDRESS REGISTER will be displayed in the DATA
register; compare the DATA register contents to the in-
struction for the displayed location.

6-3

9. Repeat step 8 until all instructions have been ver@fied
or go to step 10 whenever the correct instruction is not

displayed. (;*\

Whenever an incorrect instruction is displayed, it can be
corrected by performing steps 10 and 11.

10. With the desired location displayed in the ADDRESS REGISTER,
set the correct instruction in the SR and lift DEPosit (the
contents of the SR will be deposited in the displayed loca-
tion).

11. Press EXAMine to ensure that the instruction was correctly
stored (it will be displayed in the DATA register).

12. Proceed at step 9 until all instructions have been
verified.

The Bootstrap Loader is now loaded into core. The procedures
above are illustrated in the flowchart of Figure 6-2.

(Initializéj
R
Set SR _to xx7744 |
[Press LOAD ADDR |
Load oa Veri fy (/
or Verify
nstructi
2
Set SR to 016701 | > Press EXAM S —
1 Lift DEP 1 No structidw =
J Correct (|
A . Set SR to ‘
Set SR to Next Correct
Instruction Instruction
Yy))L 3
T Lift DED T Tift DEP| < flsStructio
erified

Yes

(; Finished i)

Figure 6-2. Loading and Verifying the
Bootstrap Loader

6-4

TN

6.1.2 Loading Bootstrap Tapes

Any paper tape punched in bootstrap format is referred to as a bootstrap

tape (see Section 6.1.3) and is loaded into core using the Bootstrap Loader.
Bootstrap tapes begin with about two feet of special bootstrap leader code
(ASCII code 351, not blank leader tape as is required by the Absolute Loader).

With the Bootstrap Loader in core, the bootstrap tape will be loaded into
core starting anywhere between location xx7400 and location xx7743, i.e.,
162, words. The paper tape input device used is that which is specified in

8
location xx7776 (see Section 6.1.1.).

Bootstrap tapes are loaded into core as explained below.

1. Set the ENABLE/HALT switch to HALT.

2. Place the bootstrap tape in the specified reader
with the special bootstrap leader code over the
reader sensors (under the reader station).

3. Set the SR to xx7744 (the starting address of the
Bootstrap Loader) and press LOAD ADDRess.

4. Set the ENABLE/HALT switch to ENABLE.

Press START. The bootstrap tape will pass through
the reader as data is being loaded into core.

6. The bootstrap tape stops after the last frame of
data (see Figure 6-5) has been read into core.
The program on the bootstrap is now in core.

The procedures above are illustrated in the flowchart of Figure 6-3.

With Bootstrap
Loader i?LCore

Set ENABLE/HALT

—————— LSee Figqure 6-2

to HALT
Place Bootstrap Tapq_ _ _ _ _ _ Code 351 must be
in Sneciﬁ&ed Reader Lover Reader sensors

Set SR to xx7744 J

|Press LOAD ADDR]

9
Set ENABLL/HALT
to ENABLE

|LLPxess STA]

Tape Reads 1n and l

iData 1s 1n Core 1

Figure 6-3. Loading Bootstrap Tapes Into Core

6-5

Should the bootstrap tape not read in immediately after depressing the
START switch, it would be due to any one of the following:

1. Bootstrap Loader not correctly loaded.

2. Using the wrong input device.

3. Code 351 not directly over the reader sensors.

4. Bootstrap tape not properly positioned in reader.

6.1.3 Bootstrap Loader Operation

The Bootstrap Loader source program is shown below. The starting address
in the example denotes that the Loader is to be loaded into memory bank zero

(a 4K system).

000001 R1=%1 ;USED FOR THE DEVICE ADDRESS

000002 R2=%2 ;USED FOR THE LOAD ADDRESS DISPLACEMENT
017400 LOAD=17400 ;DATA MAY BE LOADED NO LOWER
; THAN THIS
L 017744 .=17744 ; START ADDRESS OF THE BOOTSTRAP LOADER
017744 016701 START: MOV DEVICE,R1l ;PICK UP DEVICE ADDRESS,
| 000026 ;PLACE IN R1
017750 012702 LOOP: MOV #.-LOAD+2,R2 ;PICK UP ADDRESS
000352 ;DISPLACEMENT
017754 005211 ENABLE: INC @R1 ; ENABLE THE PAPER TAPE
017756 105711 WAIT: TSTB @R1 ; READER
;WAIT UNTIL FRAME
017760 100376 BPL WAIT ; IS AVAILABLE
017762 116162 MOVB 2(R1l) ,LOAD(R2) ; STORE FRAME READ
000002 ;FROM TAPE IN MEMORY
| 017400 |
017770 005267 INC LOOP+2 ; INCREMENT LOAD ADDRESS
177756 ;DISPLACEMENT
017774 000765 BRNCH: BR LOOP ’ ; GO BACK AND READ MORE DATA
017776 000000 DEVICE: 0 ; ADDRESS OF INPUT DEVICE

Figure 6-4. The Bootstrap Loader Program

The program above is a brief example of the PAL-11A Assembly Language

which is explained in Chapter 3.

‘Bootstrap tapes are coded in the following format.

351 »
. Special bootstrap leader code (at least two feet
. in length)

351

XXX Load offset (see text below)

AAA

e ™.

VAN

BBB
Cccc Program to be loaded (up to 1625 words or 3444
. frames)

227
301
035
026
000
302 Boot overlay code, as shown.
025
373
Va%% Jump offset (see text below)

Figure 6-5. Bootstrap Tape Format
The Bootstrap Loader starts by loading the device status register ad-

dress into Rl and 3528

operation in the device and the next two instructions form a loop to wait

into R2. The next instruction indicates a read

for the read operation to be completed. When data is encountered it is
transferred to a location determined by the sum of the index word (xx7400)
and the contents of R2.

Because R2 is initially 3525, the first word is moved to location
xx7752, and it becomes the immediate data to set R2 in the next execution
of the loop. This immediate data is then incremented by one and the pro-
gram branches to the beginning of the loop.

The leader code, plus the increment, is equal in value to the data
placed in R2 during the initialization; therefore, leader code has no ef-
fect on the loader program. Each time leader code is read the processor
executes the same loop and the program remains unmodified. The first code
other than leader code, however, replaces the data to be loaded into R2
with some other value which acts as a pointer to the program starting loca-
tion (loading address). Subsequent bytes are read not into the location
of the immediate data but into consecutive core locations. The program
will thus be read in byte by byte. The INC instruction which operates on
the data for R2 puts data bytes in sequential locations, and requires that
the value of the leader code and the offset be one less than the value de-

sired in R2.

The boot overlay code will overlay the first two instructions of the
Loader, because the last data byte is placed in the core location immedi-

6-7

ately preceding the Loader. The first instruction is unchanged by the over-

lay, but the second instruction is changed to place the next byte read, jump (*4\
offset, into the lower byte of the branch instruction. By changing the off-

set in this branch instruction, the Loader can branch to the start of the

loaded program or to any point within the program.

The Bootstrap Loader is self-modifying, and the program loaded by the
Loader restores the Loader to its original condition by restoring the con-

tents of locations xx7752 and xx7774 to 000352 and 000765 respectively.

6.2 THE ABSOLUTE LOADER

The Absolute Loader is a system program which, when in core, enables you to
load into any core memory bank data punched on paper tape in absolute binary (/ /
format. It is used primarily to load the paper tape system software (exclud-

ing certain subprograms) and your object programs assembled with PAL-11A,

The major features of the Absolute Loader include:

l. Testing of the checksum on the input tape to assure complete,
accurate loads.

2. Starting the loaded program upon completion of loading with- (‘
out additional user action, as specified by the .END in the
program just loaded. .

3. Specifying the load bias of position independent programs
at load-time rather than at assembly time, by using the de-
sired Loader switch register option.

6.2.1 Loading the Loader Into Core : (

The Absolute Loader is supplied on punched paper tape in bootstrap format.
Therefore, the Bootstrap Loader is used to load the Absolute Loader into
core. It occupies locations xx7474 through xx7743, and its starting address
is xx7500. The Absolute Loader program is 72lO words long, and is loaded

adjacent to the Bootstrap Loader as explained in Section 6.1.2.

6.2.2 Loading Absolute Tapes

Any paper tape punched in absolute binary format is referred to as an abso-

lute tape,. and is loaded into core using the Absolute Loader. When using

the Absolute Loader, there are two types of load available: normal and
relocated. , , : <,

—

A normal load occurs when the data is loaded and placed in core according

to the load addresses on the object tape. It is specified by setting bit 0

of the Switch Register to zero immediately before starting the load.

There are two types of relocated loads.

a. Loading to continue from where the loader left off
after the previous load -

This is used, for example, when the object program
belng loaded is contained on more than one tape.
It is specified by setting the Switch Register to
000001 immediately before starting the load.

b. Loading into a specific area of core -

This is normally used when loading position inde-
pendent programs. A position independent program
is one which may be loaded and run anywhere in
available core. The program is written using the
position independent instruction format (see Chap-
ter 9). This type of load is specified by setting
the Switch Register to the load bias and adding

l to it (i.e., setting bit 0 to 1).

Optional switch register settings for the three types of loads are

listed below.

Switch Register

Type of Load 4 Bits 1-14 Bit 0
Normal (ignored) 0
Relocated - continue 0 1

loading where left off

Relocated - load in nnnnn 1
specified area of core (specified
address)

The absolute tape may be loaded using either of the paper tape readers.

The desired reader is specified in the last word of available core memory

(xx7776), the input device status word, as explained in Section 6.1.

The

input device status word may be changed at any time prior to loading the

absolute tape.

With the Absolute Loader in core as explained in Section 6.1.2,

lute tapes are loaded as explained below.

6-9

abso-

1. Set the ENABLE/HALT switch to HALT.

To use an input device different from that used when
loading the Absolute Loader, change the address of the
device status word (in location xx7776) to reflect the
desired device, i.e., 177560 for the Teletype reader
or 177550 for the high-speed reader.

2. Set the SR to xx7500 and press LOAD ADDR.

3. Set the SR to reflect the desired type of load (Figure
E-3 in Appendix E).

4. Place the absolute tape in the proper reader with blank
leader tape directly over the reader sensors.

5. Set ENABLE/HALT to ENABLE.

6. Press START. The absolute tape will begin passing through
the reader station as data is being loaded into core.

If the absolute tape does not begin passing through the reader station,
the Absolute Loader is not in core correctly. Therefore, reload the Loader
and start over at step 1 above. If it halts in the middle of the tape, a
checksum error occurred in the last block of data read in.

Normally, the absolute tape will stop passing through the reader sta-
tion when it encounters the transfer address as generated by the statement,
.END, denoting the end of a program. If the system halts after loading,
check that the low byte of the DATA register is zero. If so, the tape is
correctly loaded. If not zero, a checksum error (explained later) has oc-
curred in the block of data just loaded, indicating that some data was not
correctly loaded. Thus, the tape should be reloaded starting at step 1
above.

When loading a continuous relocated load, subsequent blocks of data
are loaded by placing the next tape in the appropriate reader and pressing

the CONTinue switch.

The Absolute Loader may be restarted at any time by starting at step 1

above.

6.2.3 Absolute Loader Operation

The Loader uses the eight general registers (R0O-R7) and does not preserve
or restore their previous contents. Therefore, caution should be taken to

restore or load these registers when necessary after using the Loader.
6-10

B

(

S

A block of data punched on paper tape in absolute binary format has

the following format.

FRAME 1 001 start frame
2 000 null frame
3 XXX byte count (low 8 bits)
4 XXX byte count (high 8 bits)
5 vyy load address (low 8 bits)
6 YYyY load address (high 8 bits)
. data is
. placed
. here
ZZZ last frame contains a block checksum

A program on paper tape may consist of one or more blocks of data.
Each block having a byte count (frames 3 and 4) greater than six will
cause subsequent data to be loaded into core (starting at the address speci-
fied in frames 5 and 6 under a normal load). The byte count is a positive
integer containing the total number of bytes in the block, excluding the
checksum. When the byte count of a block is equal to six the specified load
address is checked to‘see whether the address is to an even or to an odd
location. If even, the Loader will transfer control to the address speci-
fied. Thus the loaded program will be run upon completion of loading. If
odd, the loader halts.

The transfer address (TRA) may be explicitly specified in the source
program by placing the desired address in the operand field following the
.END statement. For example,
.END ALPHA

specifies the symbolic location ALPHA as the TRA, and
.END

causes the Loader to halt. With
.END nnnnnn

the Loader will also halt if the address (nnnnnn) is odd.

The checksum is displayed in the low byte of the DATA register of the

6-11

computer console. Upon completion of a load, the low byte of the DATA
register should be all zeros (unlit). Otherwise, a checksum error has
occurred, indicating that the load was not correct. The checksum is the
low-order byte of the negation of the sum of all the previous bytes in the
block. When all bytes of a block, including the checksum, are added to-
gether the low-order byte of the result should be zero. If not, some

data was lost during the load or erroneous data was picked up; the load

was incorrect. When a checksum error is displayed, theventire program should
be reloaded, as explained in the previous section. The loaders occupy core

memory as illustrated below.

xx7776 I/0 Device Word

_ Bootstrap Loader
xx7744

Absolute Loader
xx7500 Loader Stack
xx7474

User and

System
Programs

6.3 CORE MEMORY DUMPS

A core memory dump program is a system program which enables you to dump
(print or punch) the contents of all or any specified portion of core memory
onto the Teletype printer and/or punch, 1line printer or high-speed punch.

There are two dump programs available in the Paper Tape Software System:

1. DUMPTT, which dumps the octal representation of the
contents of specified portions of core onto the tele-
printer, low-speed punch, high-speed punch, or line
printer.

2. DUMPAB, which dumps the absolute binary code of the
contents of specified portions of core onto the low-
speed punch or high-speed punch.

Both dump programs are supplied on punched paper tape in bootstrap and abso-
lute binary formats. The bootstrap tapes are loaded over the Absolute

6-12

S

Y

Loader as explained in Section 6.1.3, and are used when it would be un-
desirable to alter the contents of user storage (below the Absolute
Loader). The absolute binary tapes are position independent and may be E
loaded and run anywhere in core as explained in Section 6.2.2.

DUMPTT and DUMPAB are very similar in function, and differ primari.y

in the type of output they produce.

6.3.1 Operating Procedures

Neither dump program will punch leader or trailer tape, but DUMPAB will
always punch ten blank frames of tape at the start of each block of data
dumped.

Operating procedures for both dump programs follow:

1. Select the dump program desired and place it in the
reader specified by location xx7776 (see Section 6.1).

2. If a bootstrap tape is selected, load it using the
Bootstrap Loader, Section 6.1.2. When the computer
halts go to Step 4.

3. If an absolute binary tape is selected, load it using
the Absolute Loader (Section 6.2.2), relocating as
desired.

Place the proper start address in the Switch Register,
press LOAD ADDRess and START. . (The start addresses
are shown in Section 6.3.3).

4. When the computer halts, enter the address of the
- desired output device status register in the Switch
Register and press CONTinue (low-speed punch and tele-
printer=177564; high-speed punch = 177554; 1line
printer = 177514).

5. When the computer halts, enter in the Switch
Register the address of the first byte to be dumped
and press CONTinue. This address must be even when
using DUMPTT.

6. When the computer halts again enter in the Switch
‘Register the address of the last byte to be dumped
and press CONTinue. When using the low-speed punch,
set the punch to ON before pressing CONTinue.

7. Dumping will now proceed on the selected output device.

8. When dumping is complete, the computer will halt.

If further dumping is desired, proceed to step 5. It is not necessary

6-13

to respecify the output device address except when changing to another
output device. In such a case, proceed to the second paragraph of step 3 {—4

to restart.

If DUMPAB is being used, a transfer block must be generated as de-
scribed below. If a tape read by the Absolute Loader does not have a
transfer block, the loader will wait in an input loop. 1In such a case, .
the program may be manually initiated. However, this practice is not
recommended, as there is no guarantee that load errors will not occur

when the end of the tape is read.

The transfer block is generated by performing step 5 with the trans-
fer address in the Switch Register, and step 6 with the transfer address s
minus 1 in the Switch Register. If the tape is not to be self-starting, (
an odd-numbered address must be specified in step 5 (000001, for example).

The dump programs use all eight general registers and do not restore
their original contents. Therefore, after a dump the general registers
should be loaded as necessary prior to their use by subsequent programs.

(|

6.3.2 Output Formats

The output from DUMPTT is in octal in the following format:

XXXXXX>YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY YYYYYY

where xxxxxx is the address of the first location printed or punched, and (
yyyyyy are words of data, the first of which starts at location XXXXXX.

This is the format for every line of output. There will be no more than

eight words of data per line, but there will be as many lines as are needed

to complete the dump.

The output from DUMPAB is in absolute binary, as explained in Section
6.2.3.

6.3.3 Storage Maps

The DUMPTT program is 87 words long. When used in absolute format the

storage map is: »(

xx7776

xx7744

xx7500
xx7474

XXXXXX+256

XXXXXX

XXXXXX =

When used in bootstrap format the storage map is:

xx7776

xx7744

start
address=xx7440
xx7434

P

| Bootstrap Loader

Absolute Loader

Loader Stack Space

DUMPTT

Two-word Stack Space

desired load address = start address

Bootstrap Loader

DUMPTT

Two-word Stack Space

6-15

The DUMPAB program is 65lo words long.

the storage map is:

xx7776

xx7744

xx7500
xx7474

XXXXXX+202

XXXXXX

XXXXXX =

When used in absolute format

Bootstrap Loader

Absolute Loader

Loader Stack Space

DUMPAB

Two-word Stack Space

desired load address = start ad

dress

When used in bootstrap format the storage map is:

xx7776

xx7744

start
address=xx7500
xx7474

Bootstrap Loader

DUMPAB

Two-word Stack Space

° ° ° °
N -

N -

S W

e e o o e e o o

° L] ° ° ° L]
BWwwwwwN -~

S wno -

° L] gy, SERLT VRERE)
LCOoOJOLLbdWN -

L]
D=y

NN NN NN NN NN NN NNNNN NN NN NN NN NN NN
LWOVLVLLVLVWVLWVLLY © N oo LLLuTLLTUTUuTOTUTL BB BB WWWWWWLWWWW NDNN HEH

uuotulbs W

° < L]
wN =

CHAPTER 7
INPUT/OUTPUT PROGRAMMING

INTRODUCTION 7-1
Loading IOX 7=3a
Assembling IOX =8

THE DEVICE ASSIGNMENT TABLE 1=3
Reset 7=3
Indt 7-4

BUFFER ARRANGEMENT IN DATA TRANSFER COMMANDS 7-4
Buffer Size 7=5
Mode Byte 7=5
Status Byte =6

Non-Fatal Error Codes 7=6
Done Bit 1=7
End-of-Medium Bit =7
End-of~-File Bit 7-8
Byte Count 7-8

MODES 7-8
Formatted ASCII /=8
Unformatted ASCII 7=
Formatted Binary 7=l
Unformatted Binary A=l

DATA TRANSFERS 7=12
Read =2
Write 7=13
Device Conflicts in Data Transfer Commands 7=13
Waitr (Wait, Return) 7-14
Waitr vs. Testing the Buffer Done Bit 7-15
Single Buffer Transfer on One Device 76
Double Buffering 7-17
Readr (Real-Time Read) 7=17
Writr (Real-Time Write) 7-18

REENABLING THE READER AND RESTARTING 7-18
Seek 7=18
Restart =109

FATAL ERRORS 7-19

EXAMPLE OF PROGRAM USING IOX 7=20

IOX INTERNAL INFORMATION 7=22
Conflict Byte/Word 7-22
Device Interrupt Table (DIT) 7-23
Device Status Table (DST) 7-24
Teletype Hardware Tab Facility 7-24
Adding Devices to IOX 7-24

Device Codes 7-25
Table Modification 7-25
Interrupt Routines V2T

CHAPTER 7
INPUT/OUTPUT PROGRAMMING

e

<\ 7.1 INTRODUCTION ' -

I0X, the PDP-11 Input/Output eXecutive, frees you from the details of deal-
ing directly with the I/O devices. It also provides certain programming
formats so that programs written for the paper tape software system may be

- used in a monitor environment later with only minor coding changes.

I0X provides asynchronous I/O service for the following non-file-

oriented external devices:

1. Teletype keyboard, printer, and tape reader and punch

< : 2. High-speed paper tape reader and punch

For Line Printer handling, in addition to all IOX facilities, IOXLPT is

available.

Simple I/O requests can be made, specifying devices and data forms for
<" interrupt-controlled data transfers, which can be occurring concurrently with
e the execution of a running user program. Multiple I/O devices may be run-
ning single or double buffered I/0 procéssing simultaneously.

Real-time capability is provided by allowing user programs to be exe-
cuted at device priority levels upon completion of a device action or data

transfer.

Communication with IOX is accomplished by IOT (Input/Output Trap) in-
structions in the user's program. Each IOT is followed by two or three
words consisting of one of the IOX commands and its operands. The IOX com-

mands can be divided into two categories:

1. those concerned with establishing necessary conditions for
performing input and output (mainly initializations), and

2. those concerned directly with the transfer of data.
When transfer of data is occurring, IOX is operating at the priority
<\ " level of the device. The calling program runs at its priority level, either

concurrent with the data transfer, or sequentially.

7-1

Programming format for commands is:

10T -
.WORD (an address) (;

.BYTE (a command code), (a slot number)

Before using the data transfer commands, two preparatory tasks must
be performed:

1. Since device specifications are made by referencing "slots"
in IOX's Device Assignment Table (DAT) rather than devices ,
themselves, the slots specified in your code must have de- -
vices assigned to them.

2. The buffer, whose address is specified in your code, must
be set up with information about the data. :

In those non-data-transfer commands where an addr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>